beam search、top-k sampling、nucleus sampling、temperature sampling和联合采样

2024-03-17 14:18

本文主要是介绍beam search、top-k sampling、nucleus sampling、temperature sampling和联合采样,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这几种解码策略在hugging face的GenerationMixin(transformers/generation/utils.py)中均有所实现,在hugging face上的生成式模型都要继承GenerationMixin,以beamsearch为例,下面self就是继承的子类提供的根据w_{0..i-1}给w_{i}打分的language model,这个language model里当然要实现例如kv_cache等策略:

            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)outputs = self(**model_inputs,return_dict=True,output_attentions=output_attentions,output_hidden_states=output_hidden_states,)

假设一个搜索任务

假设现在有一个简化版的中文翻译英文任务,输入和输出如下,为了方便描述搜索算法,限制输出词典只有{"I", "H", "U"} 这3个候选词,限制1个时间步长翻译1个汉字,1个汉字对应1个英文单词,这里总共3个汉字,所以只有3个时间步长。

中文输入:"我" "恨" "你"
英文输出:"I" "H" "U"

目标:得到最优的翻译序列 I-H-U

exhaustive search(穷举搜索)

最直观的方法就是穷举所有可能的输出序列,3个时间步长,每个步长3种选择,共计  种排列组合。

I-I-I
I-I-H
I-I-U
I-H-I
I-H-H
I-H-U
I-U-I
I-U-H
I-U-UH-I-I
H-I-H
H-I-U
H-H-I
H-H-H
H-H-U
H-U-I
H-U-H
H-U-UU-I-I
U-I-H
U-I-U
U-H-I
U-H-H
U-H-U
U-U-I
U-U-H
U-U-U

从所有的排列组合中找到输出条件概率最大的序列。穷举搜索能保证全局最优,但计算复杂度太高,当输出词典稍微大一点根本无法使用。

greedy search(贪心搜索)

贪心算法在翻译每个字的时候,直接选择条件概率最大的候选值作为当前最优。如下图所以,

  • 第1个时间步长:首先翻译"我",发现候选"I"的条件概率最大为0.6,所以第一个步长直接翻译成了"I"。
  • 第2个时间步长:翻译"我恨",发现II概率0.2,IH概率0.7,IU概率0.1,所以选择IH作为当前步长最优翻译结果。
  • 第3个时间步长:翻译"我恨你",发现IHI概率0.05,IHH概率0.05,IHU概率0.9,所以选择IHU作为最终的翻译结果。

PS:图中的概率如何得来的?不同的模型有不同的算法,我自己随便填的。

greedy search

贪心算法每一步选择中都采取在当前状态下最好或最优的选择,通过这种局部最优策略期望产生全局最优解。但是期望是好的,能不能实现是另外一回事了。贪心算法本质上没有从整体最优上加以考虑,并不能保证最终的结果一定是全局最优的。但是相对穷举搜索,搜索效率大大提升。

beam search(束搜索)

beam search是对greedy search的一个改进算法。相对greedy search扩大了搜索空间,但远远不及穷举搜索指数级的搜索空间,是二者的一个折中方案。

beam search有一个超参数beam size(束宽),设为k。第一个时间步长,选取当前条件概率最大的k个词,当做候选输出序列的第一个词。之后的每个时间步长,基于上个步长的输出序列,挑选出所有组合中条件概率最大的k个,作为该时间步长下的候选输出序列。始终保持k个候选。最后从k个候选中挑出最优的。

还是以上面的任务为例,假设k=2,我们走一遍这个搜索流程。

  • 第一个时间步长:如下图所示,I和H的概率是top2,所以第一个时间步长的输出的候选是I和H,将I和H加入到候选输出序列中。

beam search 第一个时间步长

  • 第2个时间步长:如下图所示,以I开头有三种候选{II, IH, IU},以H开头有三种候选{HI, HH, HU}。从这6个候选中挑出条件概率最大的2个,即IH和HI,作为候选输出序列。

beam search 第二个时间步长

  • 第3个时间步长:同理,以IH开头有三种候选{IHI, IHH, IHU},以HI开头有三种候选{HII, HIH, HIU}。从这6个候选中挑出条件概率最大的2个,即IHH和HIU,作为候选输出序列。因为3个步长就结束了,直接从IHH和IHU中挑选出最优值IHU作为最终的输出序列。

beam search 第三个时间步长

  • beam search不保证全局最优,但是比greedy search搜索空间更大,一般结果比greedy search要好。
  • greedy search 可以看做是 beam size = 1时的 beam search。

Top-K sampling

简单说beam search的缺点是high quality human language does not follow a distribution of high probability next words,需要一定的随机性,所以有了采样。这就是top-k sampling:在解码的每个时间步从前k个概率最大的词中按它们的概率进行采样。但top-k sampling中k的选择是个难题,选大了可能会采样出长尾词,导致语句不通顺,选小了又退化成了Beam Search。

Nucleus sampling(top-p sampling)

简单说就是把上面top-k sampling里top k个词换成了top p的概率分布,在每个时间步,头部的几个词的出现概率已经占据了绝大部分概率空间,把这部分核心词叫做nucleus,这个名字起得有点唬人,叫Core Sampling可能更直观些 (但不fancy)

Temperature sampling

本质上就是在 Softmax 函数上添加了温度(T)这个参数,以下截图自 大模型文本生成——解码策略(Top-k & Top-p & Temperature) - 知乎

联合采样(top-k & top-p & Temperature)

通常我们是将 top-k、top-p、Temperature 联合起来使用。使用的先后顺序是 top-k->top-p->Temperature。

我们还是以前面的例子为例。

首先我们设置 top-k = 3,表示保留概率最高的3个 token。这样就会保留女孩、鞋子、大象这3个 token。

  • 女孩:0.664
  • 鞋子:0.199
  • 大象:0.105

接下来,我们可以使用 top-p 的方法,保留概率的累计和达到 0.8 的单词,也就是选取女孩和鞋子这两个 token。接着我们使用 Temperature = 0.7 进行归一化,变成:

  • 女孩:0.660
  • 鞋子:0.340

接着,我们可以从上述分布中进行随机采样,选取一个单词作为最终的生成结果。

部分转载自:

1. Nucleus Sampling与不同解码策略简介 - 知乎

2. 来自hugging face的博客,比较长但是说的比较细:How to generate text: using different decoding methods for language generation with Transformers3. 大模型文本生成——解码策略(Top-k & Top-p & Temperature) - 知乎

这篇关于beam search、top-k sampling、nucleus sampling、temperature sampling和联合采样的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/819192

相关文章

python与QT联合的详细步骤记录

《python与QT联合的详细步骤记录》:本文主要介绍python与QT联合的详细步骤,文章还展示了如何在Python中调用QT的.ui文件来实现GUI界面,并介绍了多窗口的应用,文中通过代码介绍... 目录一、文章简介二、安装pyqt5三、GUI页面设计四、python的使用python文件创建pytho

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

Java 后端接口入参 - 联合前端VUE 使用AES完成入参出参加密解密

加密效果: 解密后的数据就是正常数据: 后端:使用的是spring-cloud框架,在gateway模块进行操作 <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>30.0-jre</version></dependency> 编写一个AES加密

C和指针:结构体(struct)和联合(union)

结构体和联合 结构体 结构体包含一些数据成员,每个成员可能具有不同的类型。 数组的元素长度相同,可以通过下标访问(转换为指针)。但是结构体的成员可能长度不同,所以不能用下标来访问它们。成员有自己的名字,可以通过名字访问成员。 结构声明 在声明结构时,必须列出它包含的所有成员。 struct tag {member-list} variable-list ; 定义一个结构体变量x(包含

JavaScript正则表达式六大利器:`test`、`exec`、`match`、`matchAll`、`search`与`replace`详解及对比

在JavaScript中,正则表达式(Regular Expression)是一种用于文本搜索、替换、匹配和验证的强大工具。本文将深入解析与正则表达式相关的几个主要执行方法:test、exec、match、matchAll、search和replace,并对它们进行对比,帮助开发者更好地理解这些方法的使用场景和差异。 正则表达式基础 在深入解析方法之前,先简要回顾一下正则表达式的基础知识。正则

插件maven-search:Maven导入依赖时,使用插件maven-search拷贝需要的依赖的GAV

然后粘贴: <dependency>    <groupId>mysql</groupId>    <artifactId>mysql-connector-java</artifactId>    <version>8.0.26</version> </dependency>

AMEsim和Simulink联合仿真生成新的.mexw64液压模型文件

AMEsim和Simulink进行联合仿真非常重要的就是AMEsim经过第四阶段Simulation会在相同文件下面生成一个与AMEsim液压模型相同名字的.mexw64文件,在Simulink进行联合仿真的S-Function需要找的也就是这个文件,只不过输入的时候除了液压模型名字之外,后面有一个短下划线。 简而言之: AMEsim和Simulink联合仿真, 首先是需要AMEsim软

【自动驾驶】控制算法(八)横向控制Ⅱ | Carsim 与 Matlab 联合仿真基本操作

写在前面: 🌟 欢迎光临 清流君 的博客小天地,这里是我分享技术与心得的温馨角落。📝 个人主页:清流君_CSDN博客,期待与您一同探索 移动机器人 领域的无限可能。 🔍 本文系 清流君 原创之作,荣幸在CSDN首发🐒 若您觉得内容有价值,还请评论告知一声,以便更多人受益。 转载请注明出处,尊重原创,从我做起。 👍 点赞、评论、收藏,三连走一波,让我们一起养成好习惯😜 在这里,您将

Matlab/Simulink和AMEsim联合仿真(以PSO-PID算法为例)

目录 安装软件和配置环境变量 Matlab/Simulink和AMEsim联合仿真详细流程 非常重要的一点 Simulink模型和AMEsim模型用S-Function建立连接 从AMEsim软件打开Matlab Matlab里的设置 Matlab的.m文件修改(对于PSO-PID算法) 运行程序 我印象中好像做过Matlab/Simulink和AMEsim联合仿真的分享似的

2015多校联合训练第三场Work(hdu5326)

题意: a是b的上司,b是c的上司,则a是c的上司,问构成一个树种,有多人是 k个人的上司 思路: 先找出root,然后dfs一下就行 #include <bits/stdc++.h>#define LL long longusing namespace std;const int MAXN = 1e6;int f[105];int n, k;int mp[101][101];