关联分析 Apriori算法

2024-03-17 14:08
文章标签 算法 分析 关联 apriori

本文主要是介绍关联分析 Apriori算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在日常生活中,我们每个人都会去超市、商场、电商平台购物,每次的购物记录都会进入商家的用户数据库中。商家希望从这些海量的消费记录中,发现一些有价值的规律,来提高自己的盈利水平。

purchasing truck.png

当我们在Amazon上购买图书时,会经常看到下面两个提示:1.这些书会被消费者一起购买,并且价格上有一定的折扣;2.购买了这本书的人,也会购买其他书。Amazon对平台中海量的用户记录进行挖掘,发现了这些规律,然后将这些规律应用于实际销售工作当中。有数据显示,基于这种向用户进行主动推荐的营销方式,使得亚马逊的营业额增加了35%。我们的淘宝,京东也是一样的,比如我买了一件外套,店家就会向我推荐比较搭配的裤子和鞋子,并且告诉你同时购买会有一定的折扣优惠。
frequent bought.png
others bought recommendation.png

那么商家是如何发现这些商品会被一起购买的呢?

在生活中,当我们去超市买东西的时候,牛奶和面包会一起购买,啤酒和花生或者啤酒和炸鸡会一起购买,泡面和火腿肠或者泡面和辣条会被一起购买等等。这些现象在我们看来是显而易见的,不需要去探索的。拿电商京东来举个例子,其平台上的商品有几十万种甚至上百万种,用户数量有几千万甚至上亿人,这将会形成一个行为消费者,列为商品的大规模数据集,会被一起购买的商品也不止于两件。对于这样一个庞大的数据集,如果我们人工去挖掘其中的相关规律,那工作量将是非常的大。所以这项艰巨的任务,就得交给不怕辛苦的计算机来处理。

计算机是如何去发现商品之间的相关关系呢?

第一步,寻找频繁项集(Frequent Itemsets):发现那些购买频率高的商品。
第二步,探索关联规则(Association Rules):购买的商品之间必须存在强相关关系,比如牛奶和面包。

寻找频繁项集

假设下图是一家商店某一时刻的交易记录,transaction可以当做是不同的顾客,items是不同顾客的购物记录。接下来,我们需了解几个重要的概念:
项(item):在这份交易数据集中,单个的商品就被称为项,比如{Bread},{Butter},{Peanut}等。
项集(itemset):商品的组合就被称为项集,比如{Bread,Butter},{Chips,Jelly},{Bread,Milk}等。
交易记录(transaction):也就是我们的购物小票,比如1,2,3的每条交易记录。
数据集(dataset):所有的交易记录构成我们的数据集。下图所示是一份很小的数据集,用户数量和商品种类都非常的少。
支持度(support):购买特定商品的交易数占数据集中所有交易数量的比例,比如support({Bread}) = 6/8,support({Bread,Butter}) = 3/8。
transaction records.png
那么如何判断一件商品或商品组合是否会被频繁购买,我们需预先设定一个支持度标准,比如σ = 0.6,如果我们计算的某件商品支持度大于σ,则认为该件商品会被频繁购买。比如support({Jelly}) = 3/8 < 0.6,则果冻就不是一个会被频繁购买的商品。

寻找频繁项集的步骤

第一步:寻找单件商品频繁项集,分别计算每件商品的支持度,大于σ的就是频繁项。
第二步:对单件商品进行两两组合,再次遍历数据集,计算每一个组合的支持度,大于σ的就是频繁项集。
第三部:对上述项集进行组合,组合为含有3个元素的项集,再次遍历数据集,计算每一个组合的支持度,大于σ的就是频繁项集。
以此类推,找出含有4,5…n个元素的频繁项集。

上述的方法适合在数据量较小的时候,寻找频繁项集。如果我们的数据集很大,按照这样的方法去查找频繁项集就非常的耗时,因为每确定一个频繁项集,就需要对整个数据集遍历一遍。所以在此,我们使用Apriori算法,Apriori算法可以大大降低计算复杂度,提升计算效率。

Apriori算法没有数学推理,其核心思想有两点:
1.频繁项集的所有子集都是频繁项集。
2.非频繁项集的超集一定是非频繁项集。
举个例子来理解这两点核心思想,假设{1,2,3}是频繁项集,那么{1},{2},{3},{1,2},{1,3},{2,3}都是频繁项集。如果{1}是非频繁项集,那么{1,2},{1,3}都是非频繁项集。

Apriori算法是构造频繁项集的一种方法。Apriori算法的两个参数分别是最小支持度和数据集。该算法首先会产生所有单个物品的项集列表。接着扫描交易记录来查看哪些项集满足最小支持度要求,那些不满足最小支持度的集合会被去掉。然后对剩下的集合进行组合以生成包含两个元素的项集。接下来,再重新扫描交易记录,去掉不满足最小支持度的项集。该过程重复进行,直到所有项集都被去掉。

关联规则

找到频繁项集以后,接下来就需要验证频繁项集是否符合关联规则?当我们要向顾客推荐一件商品的时候,它必须符合两个条件,高频度(顾客购买的频率高)与强相关(商品之间的关联性很强)。
在上述交易数据集中,我们想向购买牛奶的顾客推荐黄油,则我们需要计算两个量:
support({Bread} - {Butter}) = 3/8
confidence({Bread} - {Butter}) = support({Bread} - {Butter})/support({Bread}) = 3/8 / 6/8 = 0.5
支持度support表示的是商品被购买的频率,confidence也叫置信度,表示的是两件商品之间相关性的强弱。
对于任意一次的推荐,两个指标(support,confidence)都必须满足设定的标准,才可以向顾客推荐。

数据挖掘的目标
从大量有噪声的数据中,挖掘出有趣的、有价值的、隐藏的规律。所以我们在做关联分析时,所分析出的规律最好是以前不被人所熟知、所注意的。如果我们分析了半天,分析出来了购买电脑的人,很有可能会购买机械键盘。当然这条规律不能算错,但是意义不大。

参考资料
1.机器学习实战,Petre Harrington。
2.数据挖掘-理论与算法,清华大学深圳研究生院博导,袁博。
3.数据分析与机器学习实战,同济大学计算机科学博士,唐宇迪。

这篇关于关联分析 Apriori算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/819182

相关文章

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.