关联分析 Apriori算法

2024-03-17 14:08
文章标签 算法 分析 关联 apriori

本文主要是介绍关联分析 Apriori算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在日常生活中,我们每个人都会去超市、商场、电商平台购物,每次的购物记录都会进入商家的用户数据库中。商家希望从这些海量的消费记录中,发现一些有价值的规律,来提高自己的盈利水平。

purchasing truck.png

当我们在Amazon上购买图书时,会经常看到下面两个提示:1.这些书会被消费者一起购买,并且价格上有一定的折扣;2.购买了这本书的人,也会购买其他书。Amazon对平台中海量的用户记录进行挖掘,发现了这些规律,然后将这些规律应用于实际销售工作当中。有数据显示,基于这种向用户进行主动推荐的营销方式,使得亚马逊的营业额增加了35%。我们的淘宝,京东也是一样的,比如我买了一件外套,店家就会向我推荐比较搭配的裤子和鞋子,并且告诉你同时购买会有一定的折扣优惠。
frequent bought.png
others bought recommendation.png

那么商家是如何发现这些商品会被一起购买的呢?

在生活中,当我们去超市买东西的时候,牛奶和面包会一起购买,啤酒和花生或者啤酒和炸鸡会一起购买,泡面和火腿肠或者泡面和辣条会被一起购买等等。这些现象在我们看来是显而易见的,不需要去探索的。拿电商京东来举个例子,其平台上的商品有几十万种甚至上百万种,用户数量有几千万甚至上亿人,这将会形成一个行为消费者,列为商品的大规模数据集,会被一起购买的商品也不止于两件。对于这样一个庞大的数据集,如果我们人工去挖掘其中的相关规律,那工作量将是非常的大。所以这项艰巨的任务,就得交给不怕辛苦的计算机来处理。

计算机是如何去发现商品之间的相关关系呢?

第一步,寻找频繁项集(Frequent Itemsets):发现那些购买频率高的商品。
第二步,探索关联规则(Association Rules):购买的商品之间必须存在强相关关系,比如牛奶和面包。

寻找频繁项集

假设下图是一家商店某一时刻的交易记录,transaction可以当做是不同的顾客,items是不同顾客的购物记录。接下来,我们需了解几个重要的概念:
项(item):在这份交易数据集中,单个的商品就被称为项,比如{Bread},{Butter},{Peanut}等。
项集(itemset):商品的组合就被称为项集,比如{Bread,Butter},{Chips,Jelly},{Bread,Milk}等。
交易记录(transaction):也就是我们的购物小票,比如1,2,3的每条交易记录。
数据集(dataset):所有的交易记录构成我们的数据集。下图所示是一份很小的数据集,用户数量和商品种类都非常的少。
支持度(support):购买特定商品的交易数占数据集中所有交易数量的比例,比如support({Bread}) = 6/8,support({Bread,Butter}) = 3/8。
transaction records.png
那么如何判断一件商品或商品组合是否会被频繁购买,我们需预先设定一个支持度标准,比如σ = 0.6,如果我们计算的某件商品支持度大于σ,则认为该件商品会被频繁购买。比如support({Jelly}) = 3/8 < 0.6,则果冻就不是一个会被频繁购买的商品。

寻找频繁项集的步骤

第一步:寻找单件商品频繁项集,分别计算每件商品的支持度,大于σ的就是频繁项。
第二步:对单件商品进行两两组合,再次遍历数据集,计算每一个组合的支持度,大于σ的就是频繁项集。
第三部:对上述项集进行组合,组合为含有3个元素的项集,再次遍历数据集,计算每一个组合的支持度,大于σ的就是频繁项集。
以此类推,找出含有4,5…n个元素的频繁项集。

上述的方法适合在数据量较小的时候,寻找频繁项集。如果我们的数据集很大,按照这样的方法去查找频繁项集就非常的耗时,因为每确定一个频繁项集,就需要对整个数据集遍历一遍。所以在此,我们使用Apriori算法,Apriori算法可以大大降低计算复杂度,提升计算效率。

Apriori算法没有数学推理,其核心思想有两点:
1.频繁项集的所有子集都是频繁项集。
2.非频繁项集的超集一定是非频繁项集。
举个例子来理解这两点核心思想,假设{1,2,3}是频繁项集,那么{1},{2},{3},{1,2},{1,3},{2,3}都是频繁项集。如果{1}是非频繁项集,那么{1,2},{1,3}都是非频繁项集。

Apriori算法是构造频繁项集的一种方法。Apriori算法的两个参数分别是最小支持度和数据集。该算法首先会产生所有单个物品的项集列表。接着扫描交易记录来查看哪些项集满足最小支持度要求,那些不满足最小支持度的集合会被去掉。然后对剩下的集合进行组合以生成包含两个元素的项集。接下来,再重新扫描交易记录,去掉不满足最小支持度的项集。该过程重复进行,直到所有项集都被去掉。

关联规则

找到频繁项集以后,接下来就需要验证频繁项集是否符合关联规则?当我们要向顾客推荐一件商品的时候,它必须符合两个条件,高频度(顾客购买的频率高)与强相关(商品之间的关联性很强)。
在上述交易数据集中,我们想向购买牛奶的顾客推荐黄油,则我们需要计算两个量:
support({Bread} - {Butter}) = 3/8
confidence({Bread} - {Butter}) = support({Bread} - {Butter})/support({Bread}) = 3/8 / 6/8 = 0.5
支持度support表示的是商品被购买的频率,confidence也叫置信度,表示的是两件商品之间相关性的强弱。
对于任意一次的推荐,两个指标(support,confidence)都必须满足设定的标准,才可以向顾客推荐。

数据挖掘的目标
从大量有噪声的数据中,挖掘出有趣的、有价值的、隐藏的规律。所以我们在做关联分析时,所分析出的规律最好是以前不被人所熟知、所注意的。如果我们分析了半天,分析出来了购买电脑的人,很有可能会购买机械键盘。当然这条规律不能算错,但是意义不大。

参考资料
1.机器学习实战,Petre Harrington。
2.数据挖掘-理论与算法,清华大学深圳研究生院博导,袁博。
3.数据分析与机器学习实战,同济大学计算机科学博士,唐宇迪。

这篇关于关联分析 Apriori算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/819182

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者