聚类算法DBSCAN

2024-03-17 14:08
文章标签 算法 聚类 dbscan

本文主要是介绍聚类算法DBSCAN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DBSCAN:Density-Based Spatial Clustering of Applications with Noise,基于密度和带有噪声点的聚类。
DBSCAN算法与K-MEANS算法一样,没有数学原理上的推导,理解起来比较容易。K-MEANS算法可以处理简单的数据集,对于复杂数据集的分类效果并不好,DBSCAN则可以处理更为复杂的数据集。
1.DBSCAN基本概念
1.核心对象:若某个点的密度达到算法设定的阈值则其为核心点。(即r邻域内点的数量不小于minPts)。假设r = 10,minPts = 4,如果a点的r范围内的点的数量>=4,则a点可以称之为核心点。
2.直接密度可达:若某点p在q的r邻域内,且q是核心点,则p-q为直接密度可达。
3.密度可达:若有一个点的序列q0、q1…qk,对任意qi - qi-1是直接密度可达的,则称q0 - qk是密度可达。
4.密度相连:若从某核心点出发,点q和k是密度可达的,则称点q和点k是密度相连的。
5.边界点:属于某一个类的非核心点,它的r邻域内点的数量小于minPts。
6.噪音点:不属于任何一个类簇的点,从任何一个核心点出发都是密度不可达的。
下图中,A为核心点,B,C为边界点,N为离群点(噪音点)。
点的分类.png
2.DBSCAN算法的工作流程
先找到第一个核心点A(符合r邻域minPts的要求),然后查找A的r邻域中的其他点是不是核心点,如果是继续向外扩散,直到所有点都无法向外扩散,则这组数据就为同一类。
3.DBSCAN API文档

sklearn.cluster.DBSCAN(eps=0.5, min_samples=5, metric='euclidean', algorithm='auto', 
leaf_size=30, p=None, random_state=None)

关键参数说明:


eps:浮点型数值,默认为0.5,eps就是我们所说的r邻域(r半径)。
min_samples:整型,默认为5,样本点个数。


4.DBSCAN 算法样例演示

from numpy as np
from sklearn.cluster import DBSCAN#随机创建一些样本点
X = np.array([[1,6],[2,4],[7,2],[8,5],[9,3],[5,3]])
db = DBSCAN(eps=3,min_samples=5).fit(X)
db.labels_
[0, 0, 1, 1, 1, 1]#使用db算法对未知数据进行分类
db.fit_predict([[1,4]])
[-1]

5.聚类算法的模型评估
轮廓系数:
轮廓系数.png
代码实现:

from sklearn.metrics import silhouette_score
#labels为分类的结果
score = silhouette_score(X,labels)

下面链接是DBSCAN的可视化过程,可以帮助我们理解KMeans的算法原理。多尝试操作几次,还是非常有趣的,其链接如下:
聚类可视化

这篇关于聚类算法DBSCAN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/819179

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个