创新指南|制药行业如何拥抱生成式AI在新药发现与开发中突破获益

本文主要是介绍创新指南|制药行业如何拥抱生成式AI在新药发现与开发中突破获益,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

生成式AI在药物发现中的应用可加速药物研发过程,并可能降低成本。通过利用GenAI,制药公司能在早期药物发现和开发中实现更快的成果,这包括从目标识别、验证,到优化的多个环节。 AI有潜力在药物筛选和优先排序、目标识别及验证、药物-药物相互作用预测等方面带来显著影响。公司领导者需要制定合理AI策略来实施和支持这项技术,并管理其将带来的巨大组织变革。​

生成型人工智能(GenAI)的涌现为药物发现和开发的早期阶段带来了革命性的潜力。通过使用大型语言模型创造出针对特定特性定制的新型分子,不仅为药物候选提供了可能,还在药物开发的多个环节中带来了变革。

这一创新方法有望大幅度减轻药物发现传统上面临的巨额成本和时间限制,并可能开辟之前未被发掘的治疗新途径。然而,为了充分利用这些优势,制药公司的领导层需要制定出切实有效的策略来部署和支持这项技术,并应对它所带来的广泛组织变革。

1.生成型AI如何解决新药发现中的多重难题

人工智能对制药业产生了巨大影响,这一点从数字化转型的迅速推进中可见一斑。近年来,对AI技术的兴趣爆炸性增长,这得益于专注于生成型人工智能的初创企业增多、大量投资涌入以及制药公司与AI供应商之间合作的加深。其中,特别注重的是生成型人工智能解决方案的融合。

利用生成式AI在药物发现过程中的巨大潜力不容小觑,这一过程通常耗时长达十年或更久,每种成功上市的疗法平均成本高达10亿至20亿美元。生成型人工智能有望加速并减少药物发现及早期开发各阶段的成本,而这些阶段中只有10%的候选分子能进入临床试验阶段。

行业专家预见生成型人工智能将在药物发现和开发的各个环节带来明显影响,随着其更广泛的采纳和模型优化,预计将显著减少成本和缩短时间线。其潜在应用起始于药物发现的几个关键步骤,比如:

  1. 目标识别:利用深度学习算法进行虚拟筛选,预测并优先识别潜在的药物-靶标相互作用,快速锁定有吸引力的化合物,高效筛选化学数据库。同时,通过生成模型和深入的数据分析,协助寻找适合新疗法转用的现有药物。
  2. 目标验证:借助生成模型的全新药物设计,即生成具有特定属性的全新分子,可以全面探索广阔的化学空间,设计针对特定靶点或疾病的定制化合物。许多这样的化合物通过传统方法可能难以发现或需要大量时间。集中资源于最有前途的候选者,可实现更高效的药物合成和测试,减少假阳性,优化验证过程。
  3. 命中生成:深度学习技术能够预测蛋白质与药物的相互作用、结合亲和力以及不良副作用,加速识别具治疗效果的化合物。生成型人工智能还能帮助设计新的化学结构,并预测合成路径,确保化学合成的可行性。
  4. 引物优化:利用先进算法和数据分析加速识具有理想治疗属性的有希望的候选物。

2.新药开发关键步骤中应用生成型AI

生成型人工智能也在药物开发的几个方面提供了帮助:

  1. 临床前测试:通过分析化学结构和潜在风险,预测药物化合物的毒性。还可以预测药物候选物的药代动力学和ADME特性,为药物的作用机制及患者安全性提供参考。
  2. 研究设计:丰富数据驱动决策,如通过改进临床研究设计,确定最相关的患者群体、研究终点和剂量方案,预测临床试验结果,帮助风险评估和研究设计的积极调整,增加成功率,减少失败成本。
  3. 行政过程自动化:预测最有可能成功和产生最大影响的研究,优化资源分配。AI技术还能自动化行政任务,如患者招募、数据录入和监管文件管理,节省时间,减少错误。
  4. 监管提交:结合生成型人工智能和通用AI技术,加快多样化数据源的整合和分析,简化监管提交流程,减少错误。使用生成型人工智能自动化合规检查,降低监管延误风险,确保提交符合所有要求。此外,通用AI的预测分析有助于评估监管提交的潜在风险,做出知情决策,减少延期。

最后,自然语言处理(NLP)技术可以加快文件的创建和验证,提高监管提交的质量和准确性。

综合来看,我们最近对各规模生物制药赞助商的调查显示,生成型人工智能预计将在化合物筛选与排序、目标识别和验证,以及药物相互作用预测方面产生最大影响。在生物标志物发现和临床试验设计方面的影响预计较小。

3.采用生成型AI的主要成本降低机会

EY咨询团队对15位生物制药和生物技术公司的高级研发决策者最近进行了调研,探讨了生成型人工智能的巨大潜力。随着时间的推移和技术的广泛采用,他们普遍认为,药物开发价值链的所有环节未来的成本将显著降低。然而,由于每个阶段面临的独特挑战和优势,成本节省的程度可能会有很大差异。

受访者预计,未来三到五年内,生成型人工智能将使所有阶段的成本降低15%至22%。五到七年后,这一数字预计将增至22%至33%。达到生成型人工智能的高峰采用时,成本节省的预期范围为44%至67%。成本降低的主要领域及受访决策者提供的平均估计包括:

  • 目标识别(高峰采用时减少67%):由于预计将迅速采用生成型人工智能驱动的虚拟筛选,目标识别成为成本降低的最大领域。
  • 目标验证(高峰采用时减少66%):专家认为,生成型人工智能将通过虚拟药物设计和化学探索加速目标验证,一旦完全采用,成本将大幅降低。
  • 引物优化(高峰采用时减少63%):预计引物优化将因生成型人工智能而经历显著的成本降低,尤其是在快速优化命中化合物、缩短和提高引物优化过程效率方面。
  • 研究设计(高峰采用时减少62%):生成型人工智能有望通过数据驱动决策显著降低研究设计成本,特别是对于资源密集型的临床试验而言,这一点尤为突出。

4.采用生成型AI的次级成本降低的机会

除了主要成本降低机会外,还有其他领域可能实现流程优化,尽管成本效益可能不那么明确:

  • 行政任务(高峰采用时减少56%):虽然行政任务是必需的,但并非实验性质。生成型人工智能能够帮助自动化和简化文档管理和合规性检查,尽管与其他研究导向阶段相比,成本节省可能不那么显著。
  • 命中生成(高峰采用时减少56%):由于其预测相互作用和设计新化合物的能力,命中生成预计将显著受益于生成型人工智能,但成本减少的幅度可能不及引物优化阶段。
  • 监管提交(高峰采用时减少54%):预计监管提交将大幅受益于生成型人工智能,自动化任务能力将提高这一阶段的效率,降低与广泛监管合规相关的成本。
  • 临床前测试(高峰采用时减少44%):尽管生成型人工智能能够有效预测毒性和药代动力学,但由于涉及广泛的实验和评估,临床前测试的成本降低幅度可能较小,复杂性测试限制了成本节省的潜力。

5.成功案例—BenevolentAI的端到端AI驱动的新药开发平台

BenevolentAI是一家利用人工智能 (AI) 加速药物发现的英国生物技术公司。该公司拥有独特的数据基础和强大的 AI 技术,能够从大量数据中提取洞察力,并识别新的治疗方法。

BenevolentAI 拥有超过 85 个数据源,包括公开数据、专有数据和推断知识。这使其能够构建更全面和准确的疾病模型。采用了最先进的 AI 技术,包括自然语言处理、机器学习和深度学习。这使其能够从大量数据中提取洞察力,并发现新的治疗方法。提供端到端的 AI 驱动的药物发现解决方案,涵盖以下几个阶段:

  • 靶点识别: BenevolentAI 的 AI 模型可以从大量数据中识别与疾病相关的潜在靶点。
  • 化合物筛选: BenevolentAI 的 AI 模型可以快速筛选数百万个化合物,并识别具有潜在治疗效果的候选药物。
  • 先导化合物优化: BenevolentAI 的 AI 模型可以帮助科学家优化先导化合物的结构和性质,提高其功效和安全性。
  • 临床试验: BenevolentAI 可以帮助设计和实施临床试验,以评估候选药物的安全性和有效性。

BenevolentAI 的 AI 驱动的药物发现解决方案已经取得了显著成果。该公司已经发现了多个具有潜在治疗效果的新型化合物,并将其推入临床试验阶段。BenevolentAI 正在改变药物发现的传统模式。该解决方案可以显著缩短药物发现的时间和成本,并提高药物发现的成功率

例如,BenevolentAI 与武田制药合作开发一种治疗阿尔茨海默病的新药。BenevolentAI 的 AI 模型帮助武田制药识别了与阿尔茨海默病相关的潜在靶点,并筛选出了具有潜在治疗效果的候选药物。目前,该候选药物正在进行临床试验。

因篇幅较长,完整原文请访问:

创新指南|制药行业如何拥抱生成式AI在新药发现与开发中突破获益

这篇关于创新指南|制药行业如何拥抱生成式AI在新药发现与开发中突破获益的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/817181

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来