运动想象 (MI) 迁移学习系列 (10) : 数据对齐(CA)

2024-03-16 12:20

本文主要是介绍运动想象 (MI) 迁移学习系列 (10) : 数据对齐(CA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

运动想象迁移学习系列:数据对齐(CA)

  • 0. 引言
  • 1. 相关工作
    • 1.1 黎曼几何
    • 1.2 切线空间映射
    • 1.3 黎曼对齐 (RA)
    • 1.4 欧几里得对齐 (EA)
  • 2. 协方差矩阵质心对齐(CA)
  • 3. 总结
  • 欢迎来稿

论文地址:https://arxiv.org/abs/1910.05878
论文题目:Manifold Embedded Knowledge Transfer for Brain-Computer Interfaces
论文代码:https://github.com/chamwen/MEKT

0. 引言

本篇博客重点考虑数据对齐部分,因为其对后续迁移学习的效果影响非常大。
数据对齐有多种方法,如黎曼对齐(Riemannian Alignment, RA)欧式对齐(Euclidean Alignment, EA)标签对齐(Label Alignment, LA)重心对齐(Centroid Alignment, CA) 等。下面重点介绍CA

CA主要是进行协方差矩阵的质心对齐,对数据的协方差矩阵进行数据对齐操作。。。。

在这里插入图片描述

1. 相关工作

1.1 黎曼几何

所有 SPD 矩阵 P ∈ R C × C P∈R^{C×C} PRC×C 形成可微的黎曼流形。黎曼几何用于操纵它们。下面提供了一些基本定义。

两个SPD矩阵 P 1 P1 P1 P 2 P2 P2 之间的黎曼距离是:
δ ( P 1 , P 2 ) = ∥ log ⁡ ( P 1 − 1 P 2 ) ∥ F , \begin{equation*} \delta \left ({P_{1}, P_{2}}\right)=\left \|{\log \left ({P_{1}^{-1} P_{2}}\right)}\right \|_{F},\tag{5}\end{equation*} δ(P1,P2)= log(P11P2) F,(5)

其中 ∥ ⋅ ∥ F \|\cdot \|_{F} FFrobenius 范式,并且 log 表示特征值 P 1 − 1 P 2 P_{1}^{-1} P_{2} P11P2 的对数 .

{ P i } i = 1 n \{P_{i}\}_{i=1}^{n} {Pi}i=1n黎曼均值是:
M R = arg ⁡ min ⁡ P ∑ i = 1 n δ 2 ( P , P i ) , \begin{equation*} M_{R}=\arg \min _{P}\sum _{i=1}^{n}\delta ^{2}(P,P_{i}), \tag{6}\end{equation*} MR=argPmini=1nδ2(P,Pi),(6)

欧式均值是:
M E = 1 n ∑ i = 1 n P i , \begin{equation*} M_{E}=\frac {1}{n}\sum _{i=1}^{n} P_{i}, \tag{7}\end{equation*} ME=n1i=1nPi,(7)

Log欧式均值是:
M L = exp ⁡ ( ∑ i = 1 n w i log ⁡ P i ) , \begin{equation*} M_{L}=\exp \left ({\sum _{i=1}^{n} w_{i} \log P_{i}}\right), \tag{8}\end{equation*} ML=exp(i=1nwilogPi),(8)

其中, w i w_{i} wi 经常被设置为 1 n \frac{1}{n} n1

1.2 切线空间映射

切线空间映射也称为对数映射,它围绕 SPD 矩阵 M M M 映射黎曼空间 SPD 矩阵 P i P_{i} Pi欧几里得切线空间向量 x i x_{i} xi ,通常是黎曼或欧几里得均值:
x i = u p p e r ( log ⁡ M ( M r e f P i M r e f ) ) , \begin{equation*} \mathbf {x}_{i}=\mathrm {upper}\left ({\log _{M}\left ({M_{ref} P_{i} M_{ref}}\right)}\right), \tag{9}\end{equation*} xi=upper(logM(MrefPiMref)),(9)

其中 u p p e r upper upper 表示取 a 的上三角形部分,一个 c × c c×c c×c 的SPD矩阵形成向量 x i ∈ R 1 × c ( c + 1 ) / 2 \mathbf {x}_{i}\in \mathbb {R}^{1\times c(c+1)/2} xiR1×c(c+1)/2 M r e f M_{ref} Mref 是一个参考矩阵。为了获得与流形局部同态的切线空间 M r e f = M − 1 / 2 M_{ref}=M^{-1/2} Mref=M1/2 是必需的。

全等变换全余不变性是黎曼空间中的两个重要性质
M ( F P 1 F , F P 2 F ) = F ⋅ M ( P 1 , P 2 ) ⋅ F , δ ( G ⊤ P 1 G , G ⊤ P 2 G ) = δ ( P 1 , P 2 ) , \begin{align*} \mathcal {M}\left ({F P_{1} F, F P_{2} F}\right)=&F \cdot \mathcal {M}(P_{1}, P_{2})\cdot F, \tag{10}\\ \delta \left ({G^{\top } P_{1} G, G^{\top } P_{2} G}\right)=&\delta \left ({P_{1}, P_{2} }\right), \tag{11}\end{align*} M(FP1F,FP2F)=δ(GP1G,GP2G)=FM(P1,P2)F,δ(P1,P2),(10)(11)

其中, M M M欧几里得或黎曼均值运算 F F F 是一个非奇异方阵,并且 G ∈ R c × c G\in \mathbb {R}^{c\times c} GRc×c 是一个可逆的对称矩阵。(11)表明,如果两个SPD矩阵都左和右乘以可逆对称矩阵,则两个SPD矩阵之间的黎曼距离不会改变

1.3 黎曼对齐 (RA)

RA首先计算一些静息(或非目标)试验的协方差矩阵, { P i } i = 1 n \{P_{i}\}^{n}_{i=1} {Pi}i=1n ,其中主体没有执行任何任务(或没有执行目标任务),然后是黎曼均值 M R M_R MR 这些矩阵,用作参考矩阵,通过以下转换来减少会话间或主题间的变化
P i ′ = M R − 1 / 2 P i M R − 1 / 2 , \begin{equation*} P_{i}'=M_{R}^{-1/2} P_{i} M_{R}^{-1/2}, \tag{12}\end{equation*} Pi=MR1/2PiMR1/2,(12)

其中 P i P_{i} Pi 是第 i i i 次试验的协方差矩阵 , P i ′ P_{i}' Pi 是对应的对齐协方差矩阵。然后,所有 P i ′ P_{i}' Pi可以通过最小均值距离 (MDM) 分类器进行分类。

1.4 欧几里得对齐 (EA)

尽管RA-MDM已经显示出良好的性能,但它仍然存在一些局限性:
1)它处理黎曼空间中的协方差矩阵,而黎曼空间分类器很少;
2)它从基于ERP的BCI中的非目标刺激中计算参考矩阵,这需要来自新受试者的一些标记试验

EA扩展了RA并通过在欧几里得空间中转换脑电图试验 X i X_i Xi解决了上述问题:
X i ′ = M E − 1 / 2 X i , \begin{equation*} X_{i}'=M_{E}^{-1/2} X_{i},\tag{13}\end{equation*} Xi=ME1/2Xi,(13)
其中, M E M_E ME 是所有脑电图试验协方差矩阵的欧几里得均值,计算公式为 (7)。

然而,EA 只考虑边际概率分布偏移,当 EEG 通道数量较少时效果最好。当有大量通道时,计算 M E − 1 / 2 M_E^{−1/2} ME1/2 可能在数值上不稳定

2. 协方差矩阵质心对齐(CA)

对齐 { X S , i } i = 1 n S \{X_{S,i}\}_{i=1}^{n_{S}} {XS,i}i=1nS { X T , i } i = 1 n T \{X_{T,i}\}_{i=1}^{n_{T}} {XT,i}i=1nT协方差矩阵的质心,因此它们的边际概率分布接近的。

CA作为预处理步骤,减少不同域边际概率分布偏移,并实现从多个源域的转移
P S , i = X S , i X S , i ⊤ P_{S,i}=X_{S,i}X_{S,i}^{\top } PS,i=XS,iXS,i 是第 i i i 源域中的协方差矩阵,以及 M r e f = M − 1 / 2 M_{ref}=M^{-1/2} Mref=M1/2。其中 M M M 可以是 (6) 中的黎曼均值、(7) 中的欧几里得均值或 (8) 中的对数欧几里得均值。然后,我们将协方差矩阵对齐:
P S , i ′ = M r e f P S , i M r e f , i = 1 , … , n S \begin{equation*} P_{S,i}'=M_{ref} P_{S,i} M_{ref},\qquad i=1,\ldots,n_{S} \tag{14}\end{equation*} PS,i=MrefPS,iMref,i=1,,nS(14)

同样,我们可以获得对齐的协方差矩阵 { P T , i ′ } i = 1 n T \{P_{T,i}'\}_{i=1}^{n_{T}} {PT,i}i=1nT 目标域。

CA 具有两个理想的属性:

  1. 边际概率分布偏移最小化。根据全等变换和全等不变性的性质,我们有
    M ( M r e f ⊤ P 1 M r e f , … , M r e f ⊤ P n S M r e f ) = M r e f ⊤ M ( P 1 , … , P n S ) M r e f = M r e f ⊤ M M r e f = I , \begin{align*}&\hspace{-0.5pc}\mathcal M (M_{ref}^{\top }P_{1}M_{ref}, \ldots,M_{ref}^{\top }P_{n_{S}}M_{ref}) \\&= M_{ref}^{\top } \mathcal M(P_{1}, \ldots,P_{n_{S}}) M_{ref} = M_{ref}^{\top } M M_{ref}=I, \tag{15}\end{align*} M(MrefP1Mref,,MrefPnSMref)=MrefM(P1,,PnS)Mref=MrefMMref=I,(15)
    即,如果我们选择 M M M 正如黎曼(或欧几里得)的意思,那么不同域的几何(或算术)中心都等于单位矩阵。因此,源域和目标域的边际分布在流形上更加接近
  2. EEG trial whitening. 在下文中,我们表明每个对齐的协方差矩阵近似于 CA 之后的单位矩阵
    如果我们将参考矩阵分解为 M r e f = [ w 1 , … , w c ] M_{ref}=\begin{bmatrix}\mathbf {w}_{1}, {\dots }, \mathbf {w}_{c}\end{bmatrix} Mref=[w1,,wc], 则 P S , i ′ P_{S,i}' PS,i ( m , n ) (m,n) (m,n) 个元素是:
    P S , i ′ ( m , n ) = w m ⊤ P S , i w n , \begin{equation*} P_{S,i}'(m,n)=\mathbf {w}_{m}^{\top } P_{S,i} \mathbf {w}_{n}, \tag{16}\end{equation*} PS,i(m,n)=wmPS,iwn,(16)
    从公式(15),可以得到:
    w m ⊤ M ( P 1 , … , P n S ) w n = { 1 , m = n 0 , m ≠ n . \begin{equation*} \mathbf {w}_{m}^{\top } \mathcal M(P_{1}, \ldots,P_{n_{S}}) \mathbf {w}_{n}=\begin{cases} 1, & m=n \\ 0, & m\neq n. \end{cases}\tag{17}\end{equation*} wmM(P1,,PnS)wn={1,0,m=nm=n.(17)
    无论是否,上述等式都成立 M M M黎曼均值,或欧几里得均值

对于使用欧几里得均值的 CA,则第 m m m 个 对角线元素 { P S , i ′ } i = 1 n S \{P_{S,i}'\}_{i=1}^{n_{S}} {PS,i}i=1nS 是:
1 n S ∑ i = 1 n S P S , i ′ ( m , m ) = w m ⊤ M ( P 1 , … , P n S ) w m = 1 , \begin{align*} \frac {1} {n_{S}}\sum _{i=1}^{n_{S}}P_{S,i}'(m,m) = \mathbf {w}_{m}^{\top } \mathcal M(P_{1}, \ldots,P_{n_{S}}) \mathbf {w}_{m} = 1, \\ \tag{18}\end{align*} nS1i=1nSPS,i(m,m)=wmM(P1,,PnS)wm=1,

同时,对于每个对角线元素,我们有 P S , i ′ ( m , m ) = ∥ X S , i ⊤ w m ∥ 2 2 > 0 P_{S,i}'(m,m)=\| X_{S,i}^{\top } \mathbf {w}_{m} \|_{2}^{2}>0 PS,i(m,m)=XS,iwm22>0,因此对角线元素 P S , i ′ P_{S,i}' PS,i 约是 1。同样,对角线外的元素 P S , i ′ P_{S,i}' PS,i 约为 0。因此 P S , i ′ P_{S,i}' PS,i 近似为识别矩阵,即对齐的脑电图试验近似变白

具有黎曼均值的 CA 是由欧几里得均值初始化的迭代过程。具有对数-欧几里得均值的CA是CA与黎曼均值的近似值,计算成本较低。因此,(18)也近似地适用于这两种均值。

3. 总结

到此,使用 数据对齐(CA) 已经介绍完毕了!!! 如果有什么疑问欢迎在评论区提出,对于共性问题可能会后续添加到文章介绍中。

如果觉得这篇文章对你有用,记得点赞、收藏并分享给你的小伙伴们哦😄。

欢迎来稿

欢迎投稿合作,投稿请遵循科学严谨、内容清晰明了的原则!!!! 有意者可以后台私信!!

这篇关于运动想象 (MI) 迁移学习系列 (10) : 数据对齐(CA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/815482

相关文章

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

使用C#导出Excel数据并保存多种格式的完整示例

《使用C#导出Excel数据并保存多种格式的完整示例》在现代企业信息化管理中,Excel已经成为最常用的数据存储和分析工具,从员工信息表、销售数据报表到财务分析表,几乎所有部门都离不开Excel,本文... 目录引言1. 安装 Spire.XLS2. 创建工作簿和填充数据3. 保存为不同格式4. 效果展示5

Python多任务爬虫实现爬取图片和GDP数据

《Python多任务爬虫实现爬取图片和GDP数据》本文主要介绍了基于FastAPI开发Web站点的方法,包括搭建Web服务器、处理图片资源、实现多任务爬虫和数据可视化,同时,还简要介绍了Python爬... 目录一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS

关于MySQL将表中数据删除后多久空间会被释放出来

《关于MySQL将表中数据删除后多久空间会被释放出来》MySQL删除数据后,空间不会立即释放给操作系统,而是会被标记为“可重用”,以供未来插入新数据时使用,只有满足特定条件时,空间才可能真正返还给操作... 目录一、mysql数据删除与空间管理1.1 理解MySQL数据删除原理1.3 执行SQL1.3 使用