运动想象 (MI) 迁移学习系列 (10) : 数据对齐(CA)

2024-03-16 12:20

本文主要是介绍运动想象 (MI) 迁移学习系列 (10) : 数据对齐(CA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

运动想象迁移学习系列:数据对齐(CA)

  • 0. 引言
  • 1. 相关工作
    • 1.1 黎曼几何
    • 1.2 切线空间映射
    • 1.3 黎曼对齐 (RA)
    • 1.4 欧几里得对齐 (EA)
  • 2. 协方差矩阵质心对齐(CA)
  • 3. 总结
  • 欢迎来稿

论文地址:https://arxiv.org/abs/1910.05878
论文题目:Manifold Embedded Knowledge Transfer for Brain-Computer Interfaces
论文代码:https://github.com/chamwen/MEKT

0. 引言

本篇博客重点考虑数据对齐部分,因为其对后续迁移学习的效果影响非常大。
数据对齐有多种方法,如黎曼对齐(Riemannian Alignment, RA)欧式对齐(Euclidean Alignment, EA)标签对齐(Label Alignment, LA)重心对齐(Centroid Alignment, CA) 等。下面重点介绍CA

CA主要是进行协方差矩阵的质心对齐,对数据的协方差矩阵进行数据对齐操作。。。。

在这里插入图片描述

1. 相关工作

1.1 黎曼几何

所有 SPD 矩阵 P ∈ R C × C P∈R^{C×C} PRC×C 形成可微的黎曼流形。黎曼几何用于操纵它们。下面提供了一些基本定义。

两个SPD矩阵 P 1 P1 P1 P 2 P2 P2 之间的黎曼距离是:
δ ( P 1 , P 2 ) = ∥ log ⁡ ( P 1 − 1 P 2 ) ∥ F , \begin{equation*} \delta \left ({P_{1}, P_{2}}\right)=\left \|{\log \left ({P_{1}^{-1} P_{2}}\right)}\right \|_{F},\tag{5}\end{equation*} δ(P1,P2)= log(P11P2) F,(5)

其中 ∥ ⋅ ∥ F \|\cdot \|_{F} FFrobenius 范式,并且 log 表示特征值 P 1 − 1 P 2 P_{1}^{-1} P_{2} P11P2 的对数 .

{ P i } i = 1 n \{P_{i}\}_{i=1}^{n} {Pi}i=1n黎曼均值是:
M R = arg ⁡ min ⁡ P ∑ i = 1 n δ 2 ( P , P i ) , \begin{equation*} M_{R}=\arg \min _{P}\sum _{i=1}^{n}\delta ^{2}(P,P_{i}), \tag{6}\end{equation*} MR=argPmini=1nδ2(P,Pi),(6)

欧式均值是:
M E = 1 n ∑ i = 1 n P i , \begin{equation*} M_{E}=\frac {1}{n}\sum _{i=1}^{n} P_{i}, \tag{7}\end{equation*} ME=n1i=1nPi,(7)

Log欧式均值是:
M L = exp ⁡ ( ∑ i = 1 n w i log ⁡ P i ) , \begin{equation*} M_{L}=\exp \left ({\sum _{i=1}^{n} w_{i} \log P_{i}}\right), \tag{8}\end{equation*} ML=exp(i=1nwilogPi),(8)

其中, w i w_{i} wi 经常被设置为 1 n \frac{1}{n} n1

1.2 切线空间映射

切线空间映射也称为对数映射,它围绕 SPD 矩阵 M M M 映射黎曼空间 SPD 矩阵 P i P_{i} Pi欧几里得切线空间向量 x i x_{i} xi ,通常是黎曼或欧几里得均值:
x i = u p p e r ( log ⁡ M ( M r e f P i M r e f ) ) , \begin{equation*} \mathbf {x}_{i}=\mathrm {upper}\left ({\log _{M}\left ({M_{ref} P_{i} M_{ref}}\right)}\right), \tag{9}\end{equation*} xi=upper(logM(MrefPiMref)),(9)

其中 u p p e r upper upper 表示取 a 的上三角形部分,一个 c × c c×c c×c 的SPD矩阵形成向量 x i ∈ R 1 × c ( c + 1 ) / 2 \mathbf {x}_{i}\in \mathbb {R}^{1\times c(c+1)/2} xiR1×c(c+1)/2 M r e f M_{ref} Mref 是一个参考矩阵。为了获得与流形局部同态的切线空间 M r e f = M − 1 / 2 M_{ref}=M^{-1/2} Mref=M1/2 是必需的。

全等变换全余不变性是黎曼空间中的两个重要性质
M ( F P 1 F , F P 2 F ) = F ⋅ M ( P 1 , P 2 ) ⋅ F , δ ( G ⊤ P 1 G , G ⊤ P 2 G ) = δ ( P 1 , P 2 ) , \begin{align*} \mathcal {M}\left ({F P_{1} F, F P_{2} F}\right)=&F \cdot \mathcal {M}(P_{1}, P_{2})\cdot F, \tag{10}\\ \delta \left ({G^{\top } P_{1} G, G^{\top } P_{2} G}\right)=&\delta \left ({P_{1}, P_{2} }\right), \tag{11}\end{align*} M(FP1F,FP2F)=δ(GP1G,GP2G)=FM(P1,P2)F,δ(P1,P2),(10)(11)

其中, M M M欧几里得或黎曼均值运算 F F F 是一个非奇异方阵,并且 G ∈ R c × c G\in \mathbb {R}^{c\times c} GRc×c 是一个可逆的对称矩阵。(11)表明,如果两个SPD矩阵都左和右乘以可逆对称矩阵,则两个SPD矩阵之间的黎曼距离不会改变

1.3 黎曼对齐 (RA)

RA首先计算一些静息(或非目标)试验的协方差矩阵, { P i } i = 1 n \{P_{i}\}^{n}_{i=1} {Pi}i=1n ,其中主体没有执行任何任务(或没有执行目标任务),然后是黎曼均值 M R M_R MR 这些矩阵,用作参考矩阵,通过以下转换来减少会话间或主题间的变化
P i ′ = M R − 1 / 2 P i M R − 1 / 2 , \begin{equation*} P_{i}'=M_{R}^{-1/2} P_{i} M_{R}^{-1/2}, \tag{12}\end{equation*} Pi=MR1/2PiMR1/2,(12)

其中 P i P_{i} Pi 是第 i i i 次试验的协方差矩阵 , P i ′ P_{i}' Pi 是对应的对齐协方差矩阵。然后,所有 P i ′ P_{i}' Pi可以通过最小均值距离 (MDM) 分类器进行分类。

1.4 欧几里得对齐 (EA)

尽管RA-MDM已经显示出良好的性能,但它仍然存在一些局限性:
1)它处理黎曼空间中的协方差矩阵,而黎曼空间分类器很少;
2)它从基于ERP的BCI中的非目标刺激中计算参考矩阵,这需要来自新受试者的一些标记试验

EA扩展了RA并通过在欧几里得空间中转换脑电图试验 X i X_i Xi解决了上述问题:
X i ′ = M E − 1 / 2 X i , \begin{equation*} X_{i}'=M_{E}^{-1/2} X_{i},\tag{13}\end{equation*} Xi=ME1/2Xi,(13)
其中, M E M_E ME 是所有脑电图试验协方差矩阵的欧几里得均值,计算公式为 (7)。

然而,EA 只考虑边际概率分布偏移,当 EEG 通道数量较少时效果最好。当有大量通道时,计算 M E − 1 / 2 M_E^{−1/2} ME1/2 可能在数值上不稳定

2. 协方差矩阵质心对齐(CA)

对齐 { X S , i } i = 1 n S \{X_{S,i}\}_{i=1}^{n_{S}} {XS,i}i=1nS { X T , i } i = 1 n T \{X_{T,i}\}_{i=1}^{n_{T}} {XT,i}i=1nT协方差矩阵的质心,因此它们的边际概率分布接近的。

CA作为预处理步骤,减少不同域边际概率分布偏移,并实现从多个源域的转移
P S , i = X S , i X S , i ⊤ P_{S,i}=X_{S,i}X_{S,i}^{\top } PS,i=XS,iXS,i 是第 i i i 源域中的协方差矩阵,以及 M r e f = M − 1 / 2 M_{ref}=M^{-1/2} Mref=M1/2。其中 M M M 可以是 (6) 中的黎曼均值、(7) 中的欧几里得均值或 (8) 中的对数欧几里得均值。然后,我们将协方差矩阵对齐:
P S , i ′ = M r e f P S , i M r e f , i = 1 , … , n S \begin{equation*} P_{S,i}'=M_{ref} P_{S,i} M_{ref},\qquad i=1,\ldots,n_{S} \tag{14}\end{equation*} PS,i=MrefPS,iMref,i=1,,nS(14)

同样,我们可以获得对齐的协方差矩阵 { P T , i ′ } i = 1 n T \{P_{T,i}'\}_{i=1}^{n_{T}} {PT,i}i=1nT 目标域。

CA 具有两个理想的属性:

  1. 边际概率分布偏移最小化。根据全等变换和全等不变性的性质,我们有
    M ( M r e f ⊤ P 1 M r e f , … , M r e f ⊤ P n S M r e f ) = M r e f ⊤ M ( P 1 , … , P n S ) M r e f = M r e f ⊤ M M r e f = I , \begin{align*}&\hspace{-0.5pc}\mathcal M (M_{ref}^{\top }P_{1}M_{ref}, \ldots,M_{ref}^{\top }P_{n_{S}}M_{ref}) \\&= M_{ref}^{\top } \mathcal M(P_{1}, \ldots,P_{n_{S}}) M_{ref} = M_{ref}^{\top } M M_{ref}=I, \tag{15}\end{align*} M(MrefP1Mref,,MrefPnSMref)=MrefM(P1,,PnS)Mref=MrefMMref=I,(15)
    即,如果我们选择 M M M 正如黎曼(或欧几里得)的意思,那么不同域的几何(或算术)中心都等于单位矩阵。因此,源域和目标域的边际分布在流形上更加接近
  2. EEG trial whitening. 在下文中,我们表明每个对齐的协方差矩阵近似于 CA 之后的单位矩阵
    如果我们将参考矩阵分解为 M r e f = [ w 1 , … , w c ] M_{ref}=\begin{bmatrix}\mathbf {w}_{1}, {\dots }, \mathbf {w}_{c}\end{bmatrix} Mref=[w1,,wc], 则 P S , i ′ P_{S,i}' PS,i ( m , n ) (m,n) (m,n) 个元素是:
    P S , i ′ ( m , n ) = w m ⊤ P S , i w n , \begin{equation*} P_{S,i}'(m,n)=\mathbf {w}_{m}^{\top } P_{S,i} \mathbf {w}_{n}, \tag{16}\end{equation*} PS,i(m,n)=wmPS,iwn,(16)
    从公式(15),可以得到:
    w m ⊤ M ( P 1 , … , P n S ) w n = { 1 , m = n 0 , m ≠ n . \begin{equation*} \mathbf {w}_{m}^{\top } \mathcal M(P_{1}, \ldots,P_{n_{S}}) \mathbf {w}_{n}=\begin{cases} 1, & m=n \\ 0, & m\neq n. \end{cases}\tag{17}\end{equation*} wmM(P1,,PnS)wn={1,0,m=nm=n.(17)
    无论是否,上述等式都成立 M M M黎曼均值,或欧几里得均值

对于使用欧几里得均值的 CA,则第 m m m 个 对角线元素 { P S , i ′ } i = 1 n S \{P_{S,i}'\}_{i=1}^{n_{S}} {PS,i}i=1nS 是:
1 n S ∑ i = 1 n S P S , i ′ ( m , m ) = w m ⊤ M ( P 1 , … , P n S ) w m = 1 , \begin{align*} \frac {1} {n_{S}}\sum _{i=1}^{n_{S}}P_{S,i}'(m,m) = \mathbf {w}_{m}^{\top } \mathcal M(P_{1}, \ldots,P_{n_{S}}) \mathbf {w}_{m} = 1, \\ \tag{18}\end{align*} nS1i=1nSPS,i(m,m)=wmM(P1,,PnS)wm=1,

同时,对于每个对角线元素,我们有 P S , i ′ ( m , m ) = ∥ X S , i ⊤ w m ∥ 2 2 > 0 P_{S,i}'(m,m)=\| X_{S,i}^{\top } \mathbf {w}_{m} \|_{2}^{2}>0 PS,i(m,m)=XS,iwm22>0,因此对角线元素 P S , i ′ P_{S,i}' PS,i 约是 1。同样,对角线外的元素 P S , i ′ P_{S,i}' PS,i 约为 0。因此 P S , i ′ P_{S,i}' PS,i 近似为识别矩阵,即对齐的脑电图试验近似变白

具有黎曼均值的 CA 是由欧几里得均值初始化的迭代过程。具有对数-欧几里得均值的CA是CA与黎曼均值的近似值,计算成本较低。因此,(18)也近似地适用于这两种均值。

3. 总结

到此,使用 数据对齐(CA) 已经介绍完毕了!!! 如果有什么疑问欢迎在评论区提出,对于共性问题可能会后续添加到文章介绍中。

如果觉得这篇文章对你有用,记得点赞、收藏并分享给你的小伙伴们哦😄。

欢迎来稿

欢迎投稿合作,投稿请遵循科学严谨、内容清晰明了的原则!!!! 有意者可以后台私信!!

这篇关于运动想象 (MI) 迁移学习系列 (10) : 数据对齐(CA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/815482

相关文章

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指