本文主要是介绍论文阅读: (CVPR2023 SDT )基于书写者风格和字符风格解耦的手写文字生成及源码对应,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
- 引言
- SDT整体结构介绍
- 代码与论文对应
- 搭建模型部分
- 数据集部分
- 总结
引言
- 许久不认真看论文了,这不赶紧捡起来。这也是自己看的第一篇用到Transformer结构的CV论文。
- 之所以选择这篇文章来看,是考虑到之前做过手写字体生成的项目。这个工作可以用来合成一些手写体数据集,用来辅助手写体识别模型的训练。
- 本篇文章将从论文与代码一一对应解析的方式来撰写,这样便于找到论文重点地方以及用代码如何实现的,更快地学到其中要点。这个项目的代码写得很好看,有着清晰的说明和整洁的代码规范。跟着仓库README就可以快速跑起整个项目。
- 如果读者可以阅读英文的话,建议先去直接阅读英文论文,会更直接看到整个面貌。
- PDF | Code
SDT整体结构介绍
- 整体框架:
- 该工作提出从个体手写中解耦作家和字符级别的风格表示,以合成逼真的风格化在线手写字符。
- 从上述框架图,可以看出整体可分为三大部分:Style encoder、Content Encoder和Transformer Decoder。
- Style Encoder: 主要学习给定的Style的Writer和Glyph两种风格表示,用于指导合成风格化的文字。包含两部分:CNN Encoder和Transformer Encdoer。
- Content Encoder: 主要提取输入文字的特征,同样包含两部分:CNN Encoder和Transformer Encdoer。
- ❓疑问:为什么要将CNN Encoder + Transformer Encoder结合使用呢?
- 这个问题在论文中只说了Content Encoder使用两者的作用。CNN部分用来从content reference中学到compact feature map。Transformer encoder用来提取textual content表示。得益于Transformer强大的long-range 依赖的捕捉能力,Content Encdoer可以得到一个全局上下文的content feature。这里让我想到经典的CRNN结构,就是结合CNN + RNN两部分。
- 这个问题在论文中只说了Content Encoder使用两者的作用。CNN部分用来从content reference中学到compact feature map。Transformer encoder用来提取textual content表示。得益于Transformer强大的long-range 依赖的捕捉能力,Content Encdoer可以得到一个全局上下文的content feature。这里让我想到经典的CRNN结构,就是结合CNN + RNN两部分。
代码与论文对应
- 论文结构的最核心代码有两部分,一是搭建模型部分,二是数据集处理部分。
搭建模型部分
- 该部分代码位于仓库中models/model.py,我这里只摘其中最关键部分添加注释来解释,其余细节请小伙伴自行挖掘。
class SDT_Generator(nn.Module):def __init__(self, d_model=512, nhead=8, num_encoder_layers=2, num_head_layers= 1,wri_dec_layers=2, gly_dec_layers=2, dim_feedforward=2048, dropout=0.1,activation="relu", normalize_before=True, return_intermediate_dec=True):super(SDT_Generator, self).__init__()### style encoder with dual heads# Feat_Encoder:对应论文中的CNN Encoder,用来提取图像经过CNN之后的特征,backbone选的是ResNet18self.Feat_Encoder = nn.Sequential(*([nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)] +list(models.resnet18(pretrained=True).children())[1:-2]))# self.base_encoder:对应论文中Style Encoder的Transformer Encoderb部分encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,dropout, activation, normalize_before)self.base_encoder = TransformerEncoder(encoder_layer, num_encoder_layers, None)writer_norm = nn.LayerNorm(d_model) if normalize_before else Noneglyph_norm = nn.LayerNorm(d_model) if normalize_before else None# writer_head和glyph_head分别对应论文中的Writer Head和Glyph Head# 从这里来看,这两个分支使用的是1层的Transformer Encoder结构self.writer_head = TransformerEncoder(encoder_layer, num_head_layers, writer_norm)self.glyph_head = TransformerEncoder(encoder_layer, num_head_layers, glyph_norm)### content ecoder# content_encoder:对应论文中Content Encoder部分,# 从Content_TR源码来看,同样也是ResNet18作为CNN Encoder的backbone# Transformer Encoder部分用了3层的Transformer Encoder结构# 详情参见:https://github.com/dailenson/SDT/blob/1352b5cb779d47c5a8c87f6735e9dde94aa58f07/models/encoder.py#L8self.content_encoder = Content_TR(d_model, num_encoder_layers)### decoder for receiving writer-wise and character-wise styles# 这里对应框图中Transformer Decoder中前后两个部分decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward,dropout, activation, normalize_before)wri_decoder_norm = nn.LayerNorm(d_model) if normalize_before else Noneself.wri_decoder = TransformerDecoder(decoder_layer, wri_dec_layers, wri_decoder_norm,return_intermediate=return_intermediate_dec)gly_decoder_norm = nn.LayerNorm(d_model) if normalize_before else Noneself.gly_decoder = TransformerDecoder(decoder_layer, gly_dec_layers, gly_decoder_norm,return_intermediate=return_intermediate_dec)### two mlps that project style features into the space where nce_loss is appliedself.pro_mlp_writer = nn.Sequential(nn.Linear(512, 4096), nn.GELU(), nn.Linear(4096, 256))self.pro_mlp_character = nn.Sequential(nn.Linear(512, 4096), nn.GELU(), nn.Linear(4096, 256))self.SeqtoEmb = SeqtoEmb(hid_dim=d_model)self.EmbtoSeq = EmbtoSeq(hid_dim=d_model)# 这里位置嵌入来源于论文Attention is all you need.self.add_position = PositionalEncoding(dropout=0.1, dim=d_model) self._reset_parameters()# the shape of style_imgs is [B, 2*N, C, H, W] during trainingdef forward(self, style_imgs, seq, char_img):batch_size, num_imgs, in_planes, h, w = style_imgs.shape# style_imgs: [B, 2*N, C:1, H, W] -> FEAT_ST_ENC: [4*N, B, C:512]style_imgs = style_imgs.view(-1, in_planes, h, w) # [B*2N, C:1, H, W]# 经过CNN Encoderstyle_embe = self.Feat_Encoder(style_imgs) # [B*2N, C:512, 2, 2]anchor_num = num_imgs//2style_embe = style_embe.view(batch_size*num_imgs, 512, -1).permute(2, 0, 1) # [4, B*2N, C:512]FEAT_ST_ENC = self.add_position(style_embe)memory = self.base_encoder(FEAT_ST_ENC) # [4, B*2N, C]writer_memory = self.writer_head(memory)glyph_memory = self.glyph_head(memory)writer_memory = rearrange(writer_memory, 't (b p n) c -> t (p b) n c',b=batch_size, p=2, n=anchor_num) # [4, 2*B, N, C]glyph_memory = rearrange(glyph_memory, 't (b p n) c -> t (p b) n c',b=batch_size, p=2, n=anchor_num) # [4, 2*B, N, C]# writer-ncememory_fea = rearrange(writer_memory, 't b n c ->(t n) b c') # [4*N, 2*B, C]compact_fea = torch.mean(memory_fea, 0) # [2*B, C]# compact_fea:[2*B, C:512] -> nce_emb: [B, 2, C:128]pro_emb = self.pro_mlp_writer(compact_fea)query_emb = pro_emb[:batch_size, :]pos_emb = pro_emb[batch_size:, :]nce_emb = torch.stack((query_emb, pos_emb), 1) # [B, 2, C]nce_emb = nn.functional.normalize(nce_emb, p=2, dim=2)# glyph-ncepatch_emb = glyph_memory[:, :batch_size] # [4, B, N, C]# sample the positive pairanc, positive = self.random_double_sampling(patch_emb)n_channels = anc.shape[-1]anc = anc.reshape(batch_size, -1, n_channels)anc_compact = torch.mean(anc, 1, keepdim=True) anc_compact = self.pro_mlp_character(anc_compact) # [B, 1, C]positive = positive.reshape(batch_size, -1, n_channels)positive_compact = torch.mean(positive, 1, keepdim=True)positive_compact = self.pro_mlp_character(positive_compact) # [B, 1, C]nce_emb_patch = torch.cat((anc_compact, positive_compact), 1) # [B, 2, C]nce_emb_patch = nn.functional.normalize(nce_emb_patch, p=2, dim=2)# input the writer-wise & character-wise styles into the decoderwriter_style = memory_fea[:, :batch_size, :] # [4*N, B, C]glyph_style = glyph_memory[:, :batch_size] # [4, B, N, C]glyph_style = rearrange(glyph_style, 't b n c -> (t n) b c') # [4*N, B, C]# QUERY: [char_emb, seq_emb]seq_emb = self.SeqtoEmb(seq).permute(1, 0, 2)T, N, C = seq_emb.shape# ========================Content Encoder部分=========================char_emb = self.content_encoder(char_img) # [4, N, 512]char_emb = torch.mean(char_emb, 0) #[N, 512]char_emb = repeat(char_emb, 'n c -> t n c', t = 1)tgt = torch.cat((char_emb, seq_emb), 0) # [1+T], put the content token as the first tokentgt_mask = generate_square_subsequent_mask(sz=(T+1)).to(tgt)tgt = self.add_position(tgt)# 注意这里的执行顺序,Content Encoder输出 → Writer Decoder → Glyph Decoder → Embedding to Sequence# [wri_dec_layers, T, B, C]wri_hs = self.wri_decoder(tgt, writer_style, tgt_mask=tgt_mask)# [gly_dec_layers, T, B, C]hs = self.gly_decoder(wri_hs[-1], glyph_style, tgt_mask=tgt_mask) h = hs.transpose(1, 2)[-1] # B T Cpred_sequence = self.EmbtoSeq(h)return pred_sequence, nce_emb, nce_emb_patch
数据集部分
- CASIA_CHINESE
data/CASIA_CHINESE ├── character_dict.pkl # 词典 ├── Chinese_content.pkl # Content reference ├── test ├── test_style_samples ├── train ├── train_style_samples # 1300个pkl,每个pkl中是同一个人写的各个字,长度不一致 └── writer_dict.pkl
- 训练集中单个数据格式解析
{'coords': torch.Tensor(coords), # 写这个字,每一划的点阵'character_id': torch.Tensor([character_id]), # content字的索引'writer_id': torch.Tensor([writer_id]), # 某个人的style'img_list': torch.Tensor(img_list), # 随机选中style的img_list'char_img': torch.Tensor(char_img), # content字的图像'img_label': torch.Tensor([label_id]), # style中图像的label }
- 推理时:
- 输入:
- 一种style15个字符的图像
- 原始输入字符
- 输出:属于该style的原始字符
- 输入:
总结
- 感觉对于Transformer的用法,比较粗暴。当然,Transformer本来就很粗暴
- 模型69M (
position_layer2_dim512_iter138k_test_acc0.9443.pth
) 比较容易接受,这和我之前以为的Transformer系列都很大,有些出入。这也算是纠正自己的盲目认知了 - 学到了
einops
库的用法,语义化操作,很有意思,值得学习。 - 第一次了解到NCE(Noise Contrastive Estimation)这个Loss,主要解决了class很多时,将其转换为二分类问题。
这篇关于论文阅读: (CVPR2023 SDT )基于书写者风格和字符风格解耦的手写文字生成及源码对应的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!