Coursera台大机器学习课程笔记3 – 机器学习的可能性

2024-03-15 12:08

本文主要是介绍Coursera台大机器学习课程笔记3 – 机器学习的可能性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


提纲:

  1. 机器学习为什么可能?
    1. 引入计算橙球概率问题
    2. 通过用Hoeffding's inequality解决上面的问题,并得出PAC的概念,证明采样数据学习到的h的错误率可以和全局一致是PAC
    3. 将得到的理论应用到机器学习,证明实际机器是可以学习

  机器学习的大多数情况下是让机器通过现有的训练集(D)的学习以获得预测未知数据的能力,即选择一个最佳的h做为学习结果,那么这种预测是可能的么?为什么在采样数据上得到的h可以认为适用于全局,也就是说其泛化性的本质是什么?

  课程首先引入一个情景:

  如果有一个装有很多(数量很大以至于无法通过数数解决)橙色球和绿色球的罐子,我们能不能推断橙色球的比例?

  

  很明显的思路是利用统计中抽样的方法,既然我们无法穷尽数遍所有罐子中的球,不如随机取出几个球,算出其中两种颜色球的比例去近似得到我们要的答案,

  这样真的可以么?我们都知道小概率事件也会发生,假如罐子里面大部分都是橙色球,而我们恰巧取出的都是绿色,这样我们就判断错了,那么到底通过抽样得出的比例能够说明什么呢?似乎两者不能直接划等号

  由此,课程中引入了一个非常重要的概念,PAC,要理解这个,先得理解一个超级重要的不等式:Hoeffding's inequality

  这个不等书说明了对于未知的那个概率,我们的抽样概率可以根它足够接近只要抽样的样本够大或者容忍的限制变松,这个和我们的直觉是相符的。式子最后给出了PAC的概念,即概率上几乎正确。所以,我们通过采用算出的橙球的概率和全局橙球的概率相等是PAC的。

  这些和机器学习有什么关系?其实前文中提到的例子可以和机器学习问题一一对应:

  映射中最关键的点是讲抽样中橙球的概率理解为样本数据集Dh(x)错误的概率,以此推算出在所有数据上h(x)错误的概率,这也是机器学习能够工作的本质,即我们为啥在采样数据上得到了一个假设,就可以推到全局呢?因为两者的错误率是PAC的,只要我们保证前者小,后者也就小了。

  请注意,以上都是对某个特定的假设,其在全局的表现可以和其在DataSet的表现PAC,保证DataSet表现好,就能够推断其能泛化。可是我们往往有很多假设,我们实际上是从很多假设中挑一个表现最好(Ein最小)的作为最终的假设,那么这样挑的过程中,最小的Ein其泛化能力一定是最好么?肯定不是。

 

  上面的例子很形象,每一个罐子都是一个假设集合,我们默认是挑表现最好的,也就是全绿色(错误率为0)的那个假设。但是当从众多假设选择时,得到全对的概率也在增加,就像丢硬币一样,当有个150个童鞋同时丢硬币5次,那么这些人中出现5面同时朝上的概率为99%,所以表现好的有可能是小概率事件发生(毕竟对于每个假设其泛化能力是PAC),其不一定就有好的泛化能力(Ein和Eout相同),我们称这次数据是坏数据(可以理解为选到了泛化能力差的假设),在坏数据上,Ein和Eout的表现是差别很大的,这就是那个小概率事件,Hoeffding's inequality告诉我们,每个h在采样数据上Ein和Eout差别很大的概率很低(坏数据):

由于有这个bound,那么我们每次选取Ein最小的h就是合理的,因为如果M小N大,出现表现好的坏数据的假设几率降低了,我们选择表现后就有信心认为其有良好的泛化能力。

 

 

总结一下:
  1.   M小,N足够大,可以使得假设具有良好的泛化能力;
  2.   如果同时,Ein很小,那么这个假设就是有效地。机器是可以学习的,学习到的就是这个表现最好的假设。

整体证明机器可以学习分了两个层面,首先对于单个假设,根据Hoeffding不等式,当N很大时,其泛化能力强是PAC的;而实际上机器学习是从众多假设中挑Ein最小的(通过测试集找)假设,这个的理论基础是当M不大,N大,选到泛化能力差的假设概率低(用到了单个假设的结论)。

这篇关于Coursera台大机器学习课程笔记3 – 机器学习的可能性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/811941

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【测试】输入正确用户名和密码,点击登录没有响应的可能性原因

目录 一、前端问题 1. 界面交互问题 2. 输入数据校验问题 二、网络问题 1. 网络连接中断 2. 代理设置问题 三、后端问题 1. 服务器故障 2. 数据库问题 3. 权限问题: 四、其他问题 1. 缓存问题 2. 第三方服务问题 3. 配置问题 一、前端问题 1. 界面交互问题 登录按钮的点击事件未正确绑定,导致点击后无法触发登录操作。 页面可能存在

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个