【论文笔记合集】ARIMA 非平稳过程通过差分转化为平稳过程

2024-03-15 07:28

本文主要是介绍【论文笔记合集】ARIMA 非平稳过程通过差分转化为平稳过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

本文作者: slience_me


文章目录

  • ARIMA 非平稳过程通过差分转化为平稳过程
    • 文章原文
    • 具体解释
    • 详解参照

ARIMA 非平稳过程通过差分转化为平稳过程

文章原文

Many time series forecasting methods start from the classic tools [38, 10]. ARIMA [7, 6] tackles the
forecasting problem by transforming the non-stationary process to stationary through differencing.
许多时间序列预测方法都是从经典工具开始的[38,10]。ARIMA [7,6]通过差分将非平稳过程转换为平稳过程来解决预测问题。

这句话提到了许多时间序列预测方法通常从经典工具开始,并提到了其中的一个经典工具是ARIMA模型。

ARIMA(自回归综合移动平均模型)是一种经典的时间序列预测方法,它通过将非平稳过程通过差分转化为平稳过程来解决预测问题。在时间序列分析中,许多时间序列数据都具有非平稳性,即它们的统计特性(如均值和方差)随着时间而变化。ARIMA模型通过对时间序列进行差分操作,将原始序列转换为一个平稳的序列,然后在这个平稳序列上建立自回归和移动平均模型,以进行预测。

因此,这句话指出了ARIMA作为一个经典工具,它通过将非平稳的时间序列转换为平稳的时间序列,然后利用这个转换后的序列来建立模型进行预测。

具体解释

让我们以一个简单的例子来解释非平稳过程如何通过差分转化为平稳过程。

假设我们有一个包含每月销售额的时间序列数据,而且我们发现这个时间序列在长期趋势上呈现增长或下降的情况,即它是一个非平稳序列。我们想要预测未来的销售额,但由于数据的非平稳性,我们不能直接应用许多经典的时间序列预测方法。

为了将这个非平稳过程转化为平稳过程,我们可以对时间序列进行差分操作。差分操作是指将当前时刻的值减去前一个时刻的值,得到一个新的序列。这个新的序列通常称为一阶差分序列。

例如,假设我们有以下月销售额的时间序列数据:

月份    销售额
1       1000
2       1100
3       1200
4       1300
5       1400

我们可以对销售额序列进行一阶差分操作:

月份    一阶差分销售额
2       1100 - 1000 = 100
3       1200 - 1100 = 100
4       1300 - 1200 = 100
5       1400 - 1300 = 100

现在我们得到了一阶差分序列,这个序列看起来是平稳的,因为它没有明显的趋势或周期性。接下来,我们可以在这个差分序列上应用ARIMA等经典方法来建立模型和进行预测。通过这种方式,我们成功地将原始的非平稳过程转化为一个平稳过程,使得我们可以更准确地进行预测。


  • 借用知乎随风的图记录一下

在这里插入图片描述
四个序列从上到下依次表示:原始序列、趋势序列、季节序列、残差序列。
在这里插入图片描述
从上图中可以看出,经过一阶差分,原序列的趋势(有趋势一定是非平稳的)被消除了,整个序列基本围绕确定的均值震荡。经过二阶差分,与一阶差分相比,只是在震荡幅度上扩大了,因此对于该序列,采用一阶差分比较合适。一般情况下,采用一阶、二阶差分就可以使序列变得平稳。

有趋势非平稳,没有趋势就是平稳。将趋势消除

详解参照

非平稳时间序列分析—差分与ARIMA模型
时间序列分析(1) 基本概念与实战
时间序列分析(2) ARIMA 模型

这篇关于【论文笔记合集】ARIMA 非平稳过程通过差分转化为平稳过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/811222

相关文章

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

作业提交过程之HDFSMapReduce

作业提交全过程详解 (1)作业提交 第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。 第2步:Client向RM申请一个作业id。 第3步:RM给Client返回该job资源的提交路径和作业id。 第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。 第5步:Client提交完资源后,向RM申请运行MrAp

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

usaco 1.2 Palindromic Squares(进制转化)

考察进制转化 注意一些细节就可以了 直接上代码: /*ID: who jayLANG: C++TASK: palsquare*/#include<stdio.h>int x[20],xlen,y[20],ylen,B;void change(int n){int m;m=n;xlen=0;while(m){x[++xlen]=m%B;m/=B;}m=n*n;ylen=0;whi

usaco 1.2 Name That Number(数字字母转化)

巧妙的利用code[b[0]-'A'] 将字符ABC...Z转换为数字 需要注意的是重新开一个数组 c [ ] 存储字符串 应人为的在末尾附上 ‘ \ 0 ’ 详见代码: /*ID: who jayLANG: C++TASK: namenum*/#include<stdio.h>#include<string.h>int main(){FILE *fin = fopen (

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

poj 3159 (spfa差分约束最短路) poj 1201

poj 3159: 题意: 每次给出b比a多不多于c个糖果,求n最多比1多多少个糖果。 解析: 差分约束。 这个博客讲差分约束讲的比较好: http://www.cnblogs.com/void/archive/2011/08/26/2153928.html 套个spfa。 代码: #include <iostream>#include <cstdio>#i

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识