【论文笔记合集】ARIMA 非平稳过程通过差分转化为平稳过程

2024-03-15 07:28

本文主要是介绍【论文笔记合集】ARIMA 非平稳过程通过差分转化为平稳过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

本文作者: slience_me


文章目录

  • ARIMA 非平稳过程通过差分转化为平稳过程
    • 文章原文
    • 具体解释
    • 详解参照

ARIMA 非平稳过程通过差分转化为平稳过程

文章原文

Many time series forecasting methods start from the classic tools [38, 10]. ARIMA [7, 6] tackles the
forecasting problem by transforming the non-stationary process to stationary through differencing.
许多时间序列预测方法都是从经典工具开始的[38,10]。ARIMA [7,6]通过差分将非平稳过程转换为平稳过程来解决预测问题。

这句话提到了许多时间序列预测方法通常从经典工具开始,并提到了其中的一个经典工具是ARIMA模型。

ARIMA(自回归综合移动平均模型)是一种经典的时间序列预测方法,它通过将非平稳过程通过差分转化为平稳过程来解决预测问题。在时间序列分析中,许多时间序列数据都具有非平稳性,即它们的统计特性(如均值和方差)随着时间而变化。ARIMA模型通过对时间序列进行差分操作,将原始序列转换为一个平稳的序列,然后在这个平稳序列上建立自回归和移动平均模型,以进行预测。

因此,这句话指出了ARIMA作为一个经典工具,它通过将非平稳的时间序列转换为平稳的时间序列,然后利用这个转换后的序列来建立模型进行预测。

具体解释

让我们以一个简单的例子来解释非平稳过程如何通过差分转化为平稳过程。

假设我们有一个包含每月销售额的时间序列数据,而且我们发现这个时间序列在长期趋势上呈现增长或下降的情况,即它是一个非平稳序列。我们想要预测未来的销售额,但由于数据的非平稳性,我们不能直接应用许多经典的时间序列预测方法。

为了将这个非平稳过程转化为平稳过程,我们可以对时间序列进行差分操作。差分操作是指将当前时刻的值减去前一个时刻的值,得到一个新的序列。这个新的序列通常称为一阶差分序列。

例如,假设我们有以下月销售额的时间序列数据:

月份    销售额
1       1000
2       1100
3       1200
4       1300
5       1400

我们可以对销售额序列进行一阶差分操作:

月份    一阶差分销售额
2       1100 - 1000 = 100
3       1200 - 1100 = 100
4       1300 - 1200 = 100
5       1400 - 1300 = 100

现在我们得到了一阶差分序列,这个序列看起来是平稳的,因为它没有明显的趋势或周期性。接下来,我们可以在这个差分序列上应用ARIMA等经典方法来建立模型和进行预测。通过这种方式,我们成功地将原始的非平稳过程转化为一个平稳过程,使得我们可以更准确地进行预测。


  • 借用知乎随风的图记录一下

在这里插入图片描述
四个序列从上到下依次表示:原始序列、趋势序列、季节序列、残差序列。
在这里插入图片描述
从上图中可以看出,经过一阶差分,原序列的趋势(有趋势一定是非平稳的)被消除了,整个序列基本围绕确定的均值震荡。经过二阶差分,与一阶差分相比,只是在震荡幅度上扩大了,因此对于该序列,采用一阶差分比较合适。一般情况下,采用一阶、二阶差分就可以使序列变得平稳。

有趋势非平稳,没有趋势就是平稳。将趋势消除

详解参照

非平稳时间序列分析—差分与ARIMA模型
时间序列分析(1) 基本概念与实战
时间序列分析(2) ARIMA 模型

这篇关于【论文笔记合集】ARIMA 非平稳过程通过差分转化为平稳过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/811222

相关文章

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

springboot整合gateway的详细过程

《springboot整合gateway的详细过程》本文介绍了如何配置和使用SpringCloudGateway构建一个API网关,通过实例代码介绍了springboot整合gateway的过程,需要... 目录1. 添加依赖2. 配置网关路由3. 启用Eureka客户端(可选)4. 创建主应用类5. 自定

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

SpringBoot集成SOL链的详细过程

《SpringBoot集成SOL链的详细过程》Solanaj是一个用于与Solana区块链交互的Java库,它为Java开发者提供了一套功能丰富的API,使得在Java环境中可以轻松构建与Solana... 目录一、什么是solanaj?二、Pom依赖三、主要类3.1 RpcClient3.2 Public

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

SpringBoot整合kaptcha验证码过程(复制粘贴即可用)

《SpringBoot整合kaptcha验证码过程(复制粘贴即可用)》本文介绍了如何在SpringBoot项目中整合Kaptcha验证码实现,通过配置和编写相应的Controller、工具类以及前端页... 目录SpringBoot整合kaptcha验证码程序目录参考有两种方式在springboot中使用k

SpringBoot整合InfluxDB的详细过程

《SpringBoot整合InfluxDB的详细过程》InfluxDB是一个开源的时间序列数据库,由Go语言编写,适用于存储和查询按时间顺序产生的数据,它具有高效的数据存储和查询机制,支持高并发写入和... 目录一、简单介绍InfluxDB是什么?1、主要特点2、应用场景二、使用步骤1、集成原生的Influ

SpringBoot实现websocket服务端及客户端的详细过程

《SpringBoot实现websocket服务端及客户端的详细过程》文章介绍了WebSocket通信过程、服务端和客户端的实现,以及可能遇到的问题及解决方案,感兴趣的朋友一起看看吧... 目录一、WebSocket通信过程二、服务端实现1.pom文件添加依赖2.启用Springboot对WebSocket