【Educoder数据挖掘实训】用SMC相似度计算文本之间的相似度

2024-03-14 22:20

本文主要是介绍【Educoder数据挖掘实训】用SMC相似度计算文本之间的相似度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Educoder数据挖掘实训】用SMC相似度计算文本之间的相似度

开挖!

还是计算文本之间相似度的实训,跟前两关区别不大。
需要注意的是 S M C SMC SMC的计算方式 s = f 11 + f 00 f 11 + f 00 + f 10 + f 01 s = \frac{f11+f00}{f11+f00+f10+f01} s=f11+f00+f10+f01f11+f00

代码如下:

import numpy as np  
import jieba  
jieba.setLogLevel(jieba.logging.INFO)  def smc_similarity(sentence1: str, sentence2: str) -> float:  # 1. 实现文本分词  ########## Begin ##########seg1 = [word for word in jieba.cut(sentence1)]  seg2 = [word for word in jieba.cut(sentence2)]  ########## End ########### 2. 建立词库  ########## Begin ##########word_list = list(set([word for word in seg1 + seg2]))  ########## End ########### 3. 统计各个文本在词典里出现词的次数  ########## Begin ##########word_counts_1 = np.array([len([word for word in seg1 if word==w]) for w in word_list])  word_counts_2 = np.array([len([word for word in seg2 if word==w]) for w in word_list])  ########## End ########### 4. 余弦公式  ########## Begin ##########f00 = np.sum((word_counts_1 == 0) & (word_counts_2 == 0))  f01 = np.sum((word_counts_1 == 0) & (word_counts_2 != 0))  f10 = np.sum((word_counts_1 != 0) & (word_counts_2 == 0))  f11 = np.sum((word_counts_1 != 0) & (word_counts_2 != 0))  smc = (f00 + f11) / (f01 + f10 + f00 + f11)  ########## End ##########return smc  str1 = "我爱北京天安门"  
str2 = "天安门雄伟壮阔让人不得不爱"  sim1 = smc_similarity(str1, str2)  print(sim1)

这篇关于【Educoder数据挖掘实训】用SMC相似度计算文本之间的相似度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/809898

相关文章

Vue中组件之间传值的六种方式(完整版)

《Vue中组件之间传值的六种方式(完整版)》组件是vue.js最强大的功能之一,而组件实例的作用域是相互独立的,这就意味着不同组件之间的数据无法相互引用,针对不同的使用场景,如何选择行之有效的通信方式... 目录前言方法一、props/$emit1.父组件向子组件传值2.子组件向父组件传值(通过事件形式)方

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

Python实现PDF与多种图片格式之间互转(PNG, JPG, BMP, EMF, SVG)

《Python实现PDF与多种图片格式之间互转(PNG,JPG,BMP,EMF,SVG)》PDF和图片是我们日常生活和工作中常用的文件格式,有时候,我们可能需要将PDF和图片进行格式互转来满足... 目录一、介绍二、安装python库三、Python实现多种图片格式转PDF1、单张图片转换为PDF2、多张图

Java实现将Markdown转换为纯文本

《Java实现将Markdown转换为纯文本》这篇文章主要为大家详细介绍了两种在Java中实现Markdown转纯文本的主流方法,文中的示例代码讲解详细,大家可以根据需求选择适合的方案... 目录方法一:使用正则表达式(轻量级方案)方法二:使用 Flexmark-Java 库(专业方案)1. 添加依赖(Ma

Java对象和JSON字符串之间的转换方法(全网最清晰)

《Java对象和JSON字符串之间的转换方法(全网最清晰)》:本文主要介绍如何在Java中使用Jackson库将对象转换为JSON字符串,并提供了一个简单的工具类示例,该工具类支持基本的转换功能,... 目录前言1. 引入 Jackson 依赖2. 创建 jsON 工具类3. 使用示例转换 Java 对象为

Linux使用cut进行文本提取的操作方法

《Linux使用cut进行文本提取的操作方法》Linux中的cut命令是一个命令行实用程序,用于从文件或标准输入中提取文本行的部分,本文给大家介绍了Linux使用cut进行文本提取的操作方法,文中有详... 目录简介基础语法常用选项范围选择示例用法-f:字段选择-d:分隔符-c:字符选择-b:字节选择--c

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J

Java文件与Base64之间的转化方式

《Java文件与Base64之间的转化方式》这篇文章介绍了如何使用Java将文件(如图片、视频)转换为Base64编码,以及如何将Base64编码转换回文件,通过提供具体的工具类实现,作者希望帮助读者... 目录Java文件与Base64之间的转化1、文件转Base64工具类2、Base64转文件工具类3、