基于深度学习的细粒度图像分类综述

2024-03-14 17:40

本文主要是介绍基于深度学习的细粒度图像分类综述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SIGAI特约作者

卢宪凯

上海交通大学在读博士

其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。

  • 书的购买链接
  • 书的勘误,优化,源代码资源

1.简介

细粒度图像分类 (Fine-grained image categorization), 又被称作子类别图像分类 (Sub-category recognition),是近年来计算机视觉、 模式识别等领域一个非常热门的研究课题。 其目的是对属于同一基础类别的图像(汽车、狗、花、鸟等)进行更加细致的子类划分, 但由于子类别间细微的类间差异以及较大的类内差异, 较之普通的图像分类任务, 细粒度图像分类难度更大。 图1所示为细粒度图像分类数据集CUB-200[1]中的两个物种,加州鸥和北极鸥,从竖直方向的图片对比可以看出,两个不同物种长相非常相似,而从对比水平方向可知,同一物种由于姿态,背景以及拍摄角度的不同,存在较大的类内差异。 因此,要想顺利的对两个极为相似的物种进行细粒度分类,最重要的是在图像中找到能够区分这两个物种的区分性的区域块(discriminative part),并能够对这些有区分性的区域块的特征进行较好的表示。

 

由于深度卷积网络能够学习到非常鲁棒的图像特征表示,对图像进行细粒度分类的方法,大多都是以深度卷积网络为基础的,这些方法大致可以分为以下四个方向:

  1. 基于常规图像分类网络的微调方法
  2. 基于细粒度特征学习(fine-grained feature learning)的方法
  3. 基于目标块的检测(part detection)和对齐(alignment)的方法
  4. 基于视觉注意机制(visualattention)的方法

 

2.基于常规图像分类网络的方法

这一类方法大多直接采用常见的深度卷积网络来直接进行图像细粒度分类,比如AlexNet[3]、VGG[4]、GoogleNet[5]、ResNet[6]以及DenseNet[7]和 SENet[8] 等。

 

由于这些分类网络具有较强的特征表示能力,因此在常规图像分类中能取得较好的效果。然而在细粒度分类中,不同物种之间的差异其实十分细微,因此,直接将常规的图像分类网络用于对细粒度图像的分类,效果并不理想。受迁移学习理论启发,一种方法是将大规模数据上训练好的网络迁移到细粒度分类识别任务中来。常用的解决方法是采用在ImageNet上预训练过的网络权值作为初始权值,然后再通过在细粒度分类数据集上对网络的权值进行微调(finetune),得到最终的分类网络。

在[9]中,Zhang等人进一步将度量损失函数引入到精细分类网络的微调中来。具体而言,每次输入三个样本(Postive,Reference以及Negative)到三个共享权值的网络中,然后利用三个网络的特征输出用来计算损失函数,除了传统的softmax 损失函数,三个特征输出还构成了广义的triplet 损失。最后两个损失函数联合用来微调网络:

E=\lambda _{s}E_{s}(r)+(1-\lambda )E_{t}(r,p,n)

其中, E_{s}(r) 是softmax获取的分类误差,E_{t}(r,p,n)E_{s}(r)是通过图2中三个共享参数的子网络

这篇关于基于深度学习的细粒度图像分类综述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/809183

相关文章

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep