基于深度学习的细粒度图像分类综述

2024-03-14 17:40

本文主要是介绍基于深度学习的细粒度图像分类综述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SIGAI特约作者

卢宪凯

上海交通大学在读博士

其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。

  • 书的购买链接
  • 书的勘误,优化,源代码资源

1.简介

细粒度图像分类 (Fine-grained image categorization), 又被称作子类别图像分类 (Sub-category recognition),是近年来计算机视觉、 模式识别等领域一个非常热门的研究课题。 其目的是对属于同一基础类别的图像(汽车、狗、花、鸟等)进行更加细致的子类划分, 但由于子类别间细微的类间差异以及较大的类内差异, 较之普通的图像分类任务, 细粒度图像分类难度更大。 图1所示为细粒度图像分类数据集CUB-200[1]中的两个物种,加州鸥和北极鸥,从竖直方向的图片对比可以看出,两个不同物种长相非常相似,而从对比水平方向可知,同一物种由于姿态,背景以及拍摄角度的不同,存在较大的类内差异。 因此,要想顺利的对两个极为相似的物种进行细粒度分类,最重要的是在图像中找到能够区分这两个物种的区分性的区域块(discriminative part),并能够对这些有区分性的区域块的特征进行较好的表示。

 

由于深度卷积网络能够学习到非常鲁棒的图像特征表示,对图像进行细粒度分类的方法,大多都是以深度卷积网络为基础的,这些方法大致可以分为以下四个方向:

  1. 基于常规图像分类网络的微调方法
  2. 基于细粒度特征学习(fine-grained feature learning)的方法
  3. 基于目标块的检测(part detection)和对齐(alignment)的方法
  4. 基于视觉注意机制(visualattention)的方法

 

2.基于常规图像分类网络的方法

这一类方法大多直接采用常见的深度卷积网络来直接进行图像细粒度分类,比如AlexNet[3]、VGG[4]、GoogleNet[5]、ResNet[6]以及DenseNet[7]和 SENet[8] 等。

 

由于这些分类网络具有较强的特征表示能力,因此在常规图像分类中能取得较好的效果。然而在细粒度分类中,不同物种之间的差异其实十分细微,因此,直接将常规的图像分类网络用于对细粒度图像的分类,效果并不理想。受迁移学习理论启发,一种方法是将大规模数据上训练好的网络迁移到细粒度分类识别任务中来。常用的解决方法是采用在ImageNet上预训练过的网络权值作为初始权值,然后再通过在细粒度分类数据集上对网络的权值进行微调(finetune),得到最终的分类网络。

在[9]中,Zhang等人进一步将度量损失函数引入到精细分类网络的微调中来。具体而言,每次输入三个样本(Postive,Reference以及Negative)到三个共享权值的网络中,然后利用三个网络的特征输出用来计算损失函数,除了传统的softmax 损失函数,三个特征输出还构成了广义的triplet 损失。最后两个损失函数联合用来微调网络:

E=\lambda _{s}E_{s}(r)+(1-\lambda )E_{t}(r,p,n)

其中, E_{s}(r) 是softmax获取的分类误差,E_{t}(r,p,n)E_{s}(r)是通过图2中三个共享参数的子网络

这篇关于基于深度学习的细粒度图像分类综述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/809183

相关文章

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]