caffe+python 使用训练好的VGG16模型 对 单张图片进行分类,输出置信度

本文主要是介绍caffe+python 使用训练好的VGG16模型 对 单张图片进行分类,输出置信度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

网上看了一堆都是图片转lmdb格式,然后测试总的准确率,我想测试每张图片的top1,top2以及对应置信度是多少,摸索了一下午+一晚上终于搞定,期间遇到不少坑!!!同时感谢实验室博士师兄一块帮我找bug
说明:数据集是上海BOT大赛的(12种动物),网上下载的vgg16权重文件,并且修改输出类别为12,对最后三层全连接网络训练了8个小时,top1准确率为80%,top5准确率95%

使用的测试图片是一个长颈鹿,类别编号是8,结果如下:
这里写图片描述
这里写图片描述

预测源码

#coding:utf-8
import numpy as np
import caffebot_data_root = 'F:/bot_data'# 设置网络结构
net_file = bot_data_root + '/myVGG16/VGG_ILSVRC_16_layers_deploy.prototxt'
# 添加训练之后的网络权重参数
caffe_model = bot_data_root + '/myVGG16/myvggmodel__iter_80000.caffemodel'
# 均值文件
mean_file = bot_data_root + '/myVGG16/mean.npy'
# 设置使用gpu
caffe.set_mode_gpu()# 构造一个Net
net = caffe.Net(net_file, caffe_model, caffe.TEST)
# 得到data的形状,这里的图片是默认matplotlib底层加载的
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
# matplotlib加载的image是像素[0-1],图片的数据格式[weight,high,channels],RGB
# caffe加载的图片需要的是[0-255]像素,数据格式[channels,weight,high],BGR,那么就需要转换# channel 放到前面
transformer.set_transpose('data', (2, 0, 1))
transformer.set_mean('data', np.load(mean_file).mean(1).mean(1))
# 图片像素放大到[0-255]
transformer.set_raw_scale('data', 255)
# RGB-->BGR 转换
transformer.set_channel_swap('data', (2, 1, 0))
#设置输入的图片shape,1张,3通道,长宽都是224
net.blobs['data'].reshape(1, 3, 224, 224)
# 加载图片
im = caffe.io.load_image(bot_data_root + '/test_min/Testset 1/0a3e66aea7f64597ad851bfffb929c5a.png')# 用上面的transformer.preprocess来处理刚刚加载图片
net.blobs['data'].data[...] = transformer.preprocess('data', im)#输出每层网络的name和shape
for layer_name, blob in net.blobs.iteritems():print layer_name + '\t' + str(blob.data.shape)# 网络开始向前传播啦
output = net.forward()# 找出最大的那个概率
output_prob = output['out'][0]
print '预测的类别是:', output_prob.argmax()# 找出最可能的前俩名的类别和概率
top_inds = output_prob.argsort()[::-1][:2]
print "预测最可能的前两名的编号: ",top_inds
print "对应类别的概率是: ", output_prob[top_inds[0]], output_prob[top_inds[1]]

网络结构代码

name: "VGG_ILSVRC_16_layers"
input: "data"
input_dim: 1
input_dim: 3
input_dim: 224
input_dim: 224
layers {bottom: "data"top: "conv1_1"name: "conv1_1"type: CONVOLUTIONconvolution_param {num_output: 64pad: 1kernel_size: 3}blobs_lr: 0blobs_lr: 0
}
layers {bottom: "conv1_1"top: "conv1_1"name: "relu1_1"type: RELU
}
layers {bottom: "conv1_1"top: "conv1_2"name: "conv1_2"type: CONVOLUTIONconvolution_param {num_output: 64pad: 1kernel_size: 3}blobs_lr: 0blobs_lr: 0
}
layers {bottom: "conv1_2"top: "conv1_2"name: "relu1_2"type: RELU
}
layers {bottom: "conv1_2"top: "pool1"name: "pool1"type: POOLINGpooling_param {pool: MAXkernel_size: 2stride: 2}
}
layers {bottom: "pool1"top: "conv2_1"name: "conv2_1"type: CONVOLUTIONconvolution_param {num_output: 128pad: 1kernel_size: 3}blobs_lr: 0blobs_lr: 0
}
layers {bottom: "conv2_1"top: "conv2_1"name: "relu2_1"type: RELU
}
layers {bottom: "conv2_1"top: "conv2_2"name: "conv2_2"type: CONVOLUTIONconvolution_param {num_output: 128pad: 1kernel_size: 3}blobs_lr: 0blobs_lr: 0
}
layers {bottom: "conv2_2"top: "conv2_2"name: "relu2_2"type: RELU
}
layers {bottom: "conv2_2"top: "pool2"name: "pool2"type: POOLINGpooling_param {pool: MAXkernel_size: 2stride: 2}
}
layers {bottom: "pool2"top: "conv3_1"name: "conv3_1"type: CONVOLUTIONconvolution_param {num_output: 256pad: 1kernel_size: 3}blobs_lr: 0blobs_lr: 0
}
layers {bottom: "conv3_1"top: "conv3_1"name: "relu3_1"type: RELU
}
layers {bottom: "conv3_1"top: "conv3_2"name: "conv3_2"type: CONVOLUTIONconvolution_param {num_output: 256pad: 1kernel_size: 3}blobs_lr: 0blobs_lr: 0
}
layers {bottom: "conv3_2"top: "conv3_2"name: "relu3_2"type: RELU
}
layers {bottom: "conv3_2"top: "conv3_3"name: "conv3_3"type: CONVOLUTIONconvolution_param {num_output: 256pad: 1kernel_size: 3}blobs_lr: 0blobs_lr: 0
}
layers {bottom: "conv3_3"top: "conv3_3"name: "relu3_3"type: RELU
}
layers {bottom: "conv3_3"top: "pool3"name: "pool3"type: POOLINGpooling_param {pool: MAXkernel_size: 2stride: 2}
}
layers {bottom: "pool3"top: "conv4_1"name: "conv4_1"type: CONVOLUTIONconvolution_param {num_output: 512pad: 1kernel_size: 3}blobs_lr: 0blobs_lr: 0
}
layers {bottom: "conv4_1"top: "conv4_1"name: "relu4_1"type: RELU
}
layers {bottom: "conv4_1"top: "conv4_2"name: "conv4_2"type: CONVOLUTIONconvolution_param {num_output: 512pad: 1kernel_size: 3}blobs_lr: 0blobs_lr: 0
}
layers {bottom: "conv4_2"top: "conv4_2"name: "relu4_2"type: RELU
}
layers {bottom: "conv4_2"top: "conv4_3"name: "conv4_3"type: CONVOLUTIONconvolution_param {num_output: 512pad: 1kernel_size: 3}blobs_lr: 0blobs_lr: 0
}
layers {bottom: "conv4_3"top: "conv4_3"name: "relu4_3"type: RELU
}
layers {bottom: "conv4_3"top: "pool4"name: "pool4"type: POOLINGpooling_param {pool: MAXkernel_size: 2stride: 2}
}
layers {bottom: "pool4"top: "conv5_1"name: "conv5_1"type: CONVOLUTIONconvolution_param {num_output: 512pad: 1kernel_size: 3}blobs_lr: 0blobs_lr: 0
}
layers {bottom: "conv5_1"top: "conv5_1"name: "relu5_1"type: RELU
}
layers {bottom: "conv5_1"top: "conv5_2"name: "conv5_2"type: CONVOLUTIONconvolution_param {num_output: 512pad: 1kernel_size: 3}blobs_lr: 0blobs_lr: 0
}
layers {bottom: "conv5_2"top: "conv5_2"name: "relu5_2"type: RELU
}
layers {bottom: "conv5_2"top: "conv5_3"name: "conv5_3"type: CONVOLUTIONconvolution_param {num_output: 512pad: 1kernel_size: 3}blobs_lr: 0blobs_lr: 0
}
layers {bottom: "conv5_3"top: "conv5_3"name: "relu5_3"type: RELU
}
layers {bottom: "conv5_3"top: "pool5"name: "pool5"type: POOLINGpooling_param {pool: MAXkernel_size: 2stride: 2}
}
layers {bottom: "pool5"top: "fc6"name: "fc6"type: INNER_PRODUCTinner_product_param {num_output: 4096}blobs_lr: 1blobs_lr: 2
}
layers {bottom: "fc6"top: "fc6"name: "relu6"type: RELU
}
layers {bottom: "fc6"top: "fc6"name: "drop6"type: DROPOUTdropout_param {dropout_ratio: 0.5}
}
layers {bottom: "fc6"top: "fc7"name: "fc7"type: INNER_PRODUCTinner_product_param {num_output: 4096}blobs_lr: 1blobs_lr: 2
}
layers {bottom: "fc7"top: "fc7"name: "relu7"type: RELU
}
layers {bottom: "fc7"top: "fc7"name: "drop7"type: DROPOUTdropout_param {dropout_ratio: 0.5}
}
layers {name: "myfc8"bottom: "fc7"top: "myfc8"type: INNER_PRODUCTinner_product_param {num_output: 12weight_filler {  type: "gaussian"  std: 0.01  }  bias_filler {  type: "constant"  value: 0  }  }blobs_lr: 10blobs_lr: 20
}
layers {bottom: "myfc8"top: "out"name: "out"type: SOFTMAX
}

这篇关于caffe+python 使用训练好的VGG16模型 对 单张图片进行分类,输出置信度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/808823

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没