【智能算法】蝠鲼觅食优化算法(MRFO)原理及实现

2024-03-14 08:36

本文主要是介绍【智能算法】蝠鲼觅食优化算法(MRFO)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.代码实现
    • 4.参考文献


1.背景

2017年,Zhao等人受到蝠鲼自然捕食行为启发,提出了蝠鲼觅食优化算法(Manta Ray Foraging Optimization,MRFO)。

2.算法原理

2.1算法思想

MRFO模拟了蝠鲼在海洋中的觅食过程,提出了三种捕食策略链式觅食-螺旋觅食-翻滚觅食

2.2算法过程

链式觅食
蝠鲼可以观察到浮游生物的位置并朝它游去,在一个位置上浮游生物的浓度越高,位置越好(适应度函数)。蝠鲼排成一列,形成觅食链,除了第一个个体外,其他个体不仅朝着食物游去,还朝着它前面的个体游去。在每次迭代中,每个个体都会根据迄今为止找到的最佳解决方案和它前面的解决方案进行更新。
在这里插入图片描述

x i d ( t + 1 ) = { x i d ( t ) + r ⋅ ( x b e s t d ( t ) − x i d ( t ) ) + α ⋅ ( x b e s t d ( t ) − x i d ( t ) ) i = 1 x i d ( t ) + r ⋅ ( x i − 1 d ( t ) − x i d ( t ) ) + α ⋅ ( x b e s t d ( t ) − x i d ( t ) ) i = 2 , … , N x_i^d(t+1)=\begin{cases}x_i^d(t)+r\cdot(x_{best}^d(t)-x_i^d(t))+\alpha\cdot(x_{best}^d(t)-x_i^d(t))&i=1\\x_i^d(t)+r\cdot(x_{i-1}^d(t)-x_i^d(t))+\alpha\cdot(x_{best}^d(t)-x_i^d(t))&i=2,\ldots,N\end{cases} xid(t+1)={xid(t)+r(xbestd(t)xid(t))+α(xbestd(t)xid(t))xid(t)+r(xi1d(t)xid(t))+α(xbestd(t)xid(t))i=1i=2,,N
a a a为控制因子,表述为:
α = 2 ⋅ r ⋅ ∣ l o g ( r ) ∣ \alpha=2\cdot r\cdot\sqrt{|log(r)|} α=2rlog(r)
螺旋觅食
当一群蝠鲼在深水中发现一片浮游生物时,它们会组成一条长长的觅食链,并以螺旋形式向食物游去。(类似于鲸鱼算法(WOA)捕食策略)
在这里插入图片描述

t / T > r a n d 时 t/T>rand时 t/T>rand,此时进行全局探索:
x i d ( t + 1 ) = { x b e s t d + r ⋅ ( x b e s t d ( t ) − x i d ( t ) ) + β ⋅ ( x b e s t d ( t ) − x i d ( t ) ) i = 1 x b e s t d + r ⋅ ( x i − 1 d ( t ) − x i d ( t ) ) + β ⋅ ( x b e s t d ( t ) − x i d ( t ) ) i = 2 , … , N x_i^d(t+1)=\begin{cases}x_{best}^d+r\cdot(x_{best}^d(t)-x_i^d(t))+\beta\cdot(x_{best}^d(t)-x_i^d(t))&i=1\\x_{best}^d+r\cdot(x_{i-1}^d(t)-x_i^d(t))+\beta\cdot(x_{best}^d(t)-x_i^d(t))&i=2,\dots,N\end{cases} xid(t+1)={xbestd+r(xbestd(t)xid(t))+β(xbestd(t)xid(t))xbestd+r(xi1d(t)xid(t))+β(xbestd(t)xid(t))i=1i=2,,N
t / T ≥ r a n d 时 t/T \ge rand时 t/Trand,此时进行局部探索:
x i d ( t + 1 ) = { x r a n d d + r ⋅ ( x r a n d d − x i d ( t ) ) + β ⋅ ( x r a n d d − x i d ( t ) ) i = 1 x r a n d d + r ⋅ ( x i − 1 d ( t ) − x i d ( t ) ) + β ⋅ ( x r a n d d − x i d ( t ) ) i = 2 , … , N \left.x_{i}^{d}(t+1)=\left\{\begin{array}{ll}{{x_{rand}^{d}+r\cdot(x_{rand}^{d}-x_{i}^{d}(t))+\beta\cdot(x_{rand}^{d}-x_{i}^{d}(t))}}&{i=1}\\{{x_{rand}^{d}+r\cdot(x_{i-1}^{d}(t)-x_{i}^{d}(t))+\beta\cdot(x_{rand}^{d}-x_{i}^{d}(t))}}&{i=2,\ldots,N}\end{array}\right.\right. xid(t+1)={xrandd+r(xranddxid(t))+β(xranddxid(t))xrandd+r(xi1d(t)xid(t))+β(xranddxid(t))i=1i=2,,N
β \beta β为控制因子,表述为:
β = 2 e r 1 T − t + 1 T ⋅ sin ⁡ ( 2 π r 1 ) \beta=2e^{r_1\frac{T-t+1}T}\cdot\sin(2\pi r_1) β=2er1TTt+1sin(2πr1)
翻滚觅食
在这种行为中,食物的位置被视为一个中心点。每个个体倾向于在中心点周围来回游动,并翻滚到一个新的位置。
在这里插入图片描述

x i d ( t + 1 ) = x i d ( t ) + S ⋅ ( r 2 ⋅ x b e s t d − r 3 ⋅ x i d ( t ) ) , i = 1 , … , N x_i^d(t+1)=x_i^d(t)+S\cdot(r_2\cdot x_{best}^d-r_3\cdot x_i^d(t)),i=1,\ldots,N xid(t+1)=xid(t)+S(r2xbestdr3xid(t)),i=1,,N
伪代码
在这里插入图片描述

3.代码实现

% 蝠鲼觅食优化算法
function [Best_pos, Best_fitness, Iter_curve, History_pos, History_best] = MRFO(pop, maxIter,lb,ub,dim,fobj)
%input
%pop 种群数量
%dim 问题维数
%ub 变量上边界
%lb 变量下边界
%fobj 适应度函数
%maxIter 最大迭代次数
%output
%Best_pos 最优位置
%Best_fitness 最优适应度值
%Iter_curve 每代最优适应度值
%History_pos 每代种群位置
%History_best 每代最优个体位置
%% 初始化种群
PopPos = zeros(pop, dim);
for i = 1:dimPopPos(:,i) = lb(i) + (ub(i) - lb(i)) * rand(pop, 1);
end
%% 计算适应度
PopFit = zeros(1, pop);
for i=1:popPopFit(i)=fobj(PopPos(i,:));
end
%% 记录
[MinFitness, MinIdx] = sort(PopFit);
Best_pos = PopPos(MinIdx(1),:);
Best_fitness = MinFitness(1);
%% 迭代
for It = 1:maxIter  Coef = It / maxIter;     if rand<0.5r1=rand;                         Beta=2*exp(r1*((maxIter-It+1)/maxIter))*(sin(2*pi*r1));    if  Coef > rand                                                      newPopPos(1,:)=Best_pos+rand(1,dim).*(Best_pos-PopPos(1,:))+Beta*(Best_pos-PopPos(1,:)); %Equation (4)elseIndivRand=rand(1,dim).*(ub-lb)+lb;                                newPopPos(1,:)=IndivRand+rand(1,dim).*(IndivRand-PopPos(1,:))+Beta*(IndivRand-PopPos(1,:)); %Equation (7)         end              else Alpha=2*rand(1,dim).*(-log(rand(1,dim))).^0.5;           newPopPos(1,:)=PopPos(1,:)+rand(1,dim).*(Best_pos-PopPos(1,:))+Alpha.*(Best_pos-PopPos(1,:)); %Equation (1)endfor i=2:popif rand<0.5r1=rand;                         Beta=2*exp(r1*((maxIter-It+1)/maxIter))*(sin(2*pi*r1));    if  Coef>rand                                                      newPopPos(i,:)=Best_pos+rand(1,dim).*(PopPos(i-1,:)-PopPos(i,:))+Beta*(Best_pos-PopPos(i,:)); %Equation (4)elseIndivRand=rand(1,dim).*(ub-lb)+lb;                                newPopPos(i,:)=IndivRand+rand(1,dim).*(PopPos(i-1,:)-PopPos(i,:))+Beta*(IndivRand-PopPos(i,:));  %Equation (7)       end              elseAlpha=2*rand(1,dim).*(-log(rand(1,dim))).^0.5;           newPopPos(i,:)=PopPos(i,:)+rand(1,dim).*(PopPos(i-1,:)-PopPos(i,:))+Alpha.*(Best_pos-PopPos(i,:)); %Equation (1)end         endfor i=1:pop% 边界检查H_ub=newPopPos(i,:)>ub;H_lb=newPopPos(i,:)<lb;newPopPos(i,:)=(newPopPos(i,:).*(~(H_ub+H_lb)))+ub.*H_ub+lb.*H_lb;  newPopFit(i)=fobj(newPopPos(i,:));    if newPopFit(i)<PopFit(i)PopFit(i)=newPopFit(i);PopPos(i,:)=newPopPos(i,:);endendS=2;for i=1:pop           newPopPos(i,:)=PopPos(i,:)+S*(rand*Best_pos-rand*PopPos(i,:)); %Equation (8)endfor i=1:pop% 边界检查H_ub=newPopPos(i,:)>ub;H_lb=newPopPos(i,:)<lb;newPopPos(i,:)=(newPopPos(i,:).*(~(H_ub+H_lb)))+ub.*H_ub+lb.*H_lb;  newPopFit(i)=fobj(newPopPos(i,:));    if newPopFit(i)<PopFit(i)PopFit(i)=newPopFit(i);PopPos(i,:)=newPopPos(i,:);endendfor i=1:popif PopFit(i)<Best_fitnessBest_fitness=PopFit(i);Best_pos=PopPos(i,:);            endendIter_curve(It)=Best_fitness;History_pos{It} = PopPos;History_best{It} = Best_pos;
end
end

在这里插入图片描述

4.参考文献

[1] Zhao W, Zhang Z, Wang L. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103300.

这篇关于【智能算法】蝠鲼觅食优化算法(MRFO)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/807827

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja