【智能算法】蝠鲼觅食优化算法(MRFO)原理及实现

2024-03-14 08:36

本文主要是介绍【智能算法】蝠鲼觅食优化算法(MRFO)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.代码实现
    • 4.参考文献


1.背景

2017年,Zhao等人受到蝠鲼自然捕食行为启发,提出了蝠鲼觅食优化算法(Manta Ray Foraging Optimization,MRFO)。

2.算法原理

2.1算法思想

MRFO模拟了蝠鲼在海洋中的觅食过程,提出了三种捕食策略链式觅食-螺旋觅食-翻滚觅食

2.2算法过程

链式觅食
蝠鲼可以观察到浮游生物的位置并朝它游去,在一个位置上浮游生物的浓度越高,位置越好(适应度函数)。蝠鲼排成一列,形成觅食链,除了第一个个体外,其他个体不仅朝着食物游去,还朝着它前面的个体游去。在每次迭代中,每个个体都会根据迄今为止找到的最佳解决方案和它前面的解决方案进行更新。
在这里插入图片描述

x i d ( t + 1 ) = { x i d ( t ) + r ⋅ ( x b e s t d ( t ) − x i d ( t ) ) + α ⋅ ( x b e s t d ( t ) − x i d ( t ) ) i = 1 x i d ( t ) + r ⋅ ( x i − 1 d ( t ) − x i d ( t ) ) + α ⋅ ( x b e s t d ( t ) − x i d ( t ) ) i = 2 , … , N x_i^d(t+1)=\begin{cases}x_i^d(t)+r\cdot(x_{best}^d(t)-x_i^d(t))+\alpha\cdot(x_{best}^d(t)-x_i^d(t))&i=1\\x_i^d(t)+r\cdot(x_{i-1}^d(t)-x_i^d(t))+\alpha\cdot(x_{best}^d(t)-x_i^d(t))&i=2,\ldots,N\end{cases} xid(t+1)={xid(t)+r(xbestd(t)xid(t))+α(xbestd(t)xid(t))xid(t)+r(xi1d(t)xid(t))+α(xbestd(t)xid(t))i=1i=2,,N
a a a为控制因子,表述为:
α = 2 ⋅ r ⋅ ∣ l o g ( r ) ∣ \alpha=2\cdot r\cdot\sqrt{|log(r)|} α=2rlog(r)
螺旋觅食
当一群蝠鲼在深水中发现一片浮游生物时,它们会组成一条长长的觅食链,并以螺旋形式向食物游去。(类似于鲸鱼算法(WOA)捕食策略)
在这里插入图片描述

t / T > r a n d 时 t/T>rand时 t/T>rand,此时进行全局探索:
x i d ( t + 1 ) = { x b e s t d + r ⋅ ( x b e s t d ( t ) − x i d ( t ) ) + β ⋅ ( x b e s t d ( t ) − x i d ( t ) ) i = 1 x b e s t d + r ⋅ ( x i − 1 d ( t ) − x i d ( t ) ) + β ⋅ ( x b e s t d ( t ) − x i d ( t ) ) i = 2 , … , N x_i^d(t+1)=\begin{cases}x_{best}^d+r\cdot(x_{best}^d(t)-x_i^d(t))+\beta\cdot(x_{best}^d(t)-x_i^d(t))&i=1\\x_{best}^d+r\cdot(x_{i-1}^d(t)-x_i^d(t))+\beta\cdot(x_{best}^d(t)-x_i^d(t))&i=2,\dots,N\end{cases} xid(t+1)={xbestd+r(xbestd(t)xid(t))+β(xbestd(t)xid(t))xbestd+r(xi1d(t)xid(t))+β(xbestd(t)xid(t))i=1i=2,,N
t / T ≥ r a n d 时 t/T \ge rand时 t/Trand,此时进行局部探索:
x i d ( t + 1 ) = { x r a n d d + r ⋅ ( x r a n d d − x i d ( t ) ) + β ⋅ ( x r a n d d − x i d ( t ) ) i = 1 x r a n d d + r ⋅ ( x i − 1 d ( t ) − x i d ( t ) ) + β ⋅ ( x r a n d d − x i d ( t ) ) i = 2 , … , N \left.x_{i}^{d}(t+1)=\left\{\begin{array}{ll}{{x_{rand}^{d}+r\cdot(x_{rand}^{d}-x_{i}^{d}(t))+\beta\cdot(x_{rand}^{d}-x_{i}^{d}(t))}}&{i=1}\\{{x_{rand}^{d}+r\cdot(x_{i-1}^{d}(t)-x_{i}^{d}(t))+\beta\cdot(x_{rand}^{d}-x_{i}^{d}(t))}}&{i=2,\ldots,N}\end{array}\right.\right. xid(t+1)={xrandd+r(xranddxid(t))+β(xranddxid(t))xrandd+r(xi1d(t)xid(t))+β(xranddxid(t))i=1i=2,,N
β \beta β为控制因子,表述为:
β = 2 e r 1 T − t + 1 T ⋅ sin ⁡ ( 2 π r 1 ) \beta=2e^{r_1\frac{T-t+1}T}\cdot\sin(2\pi r_1) β=2er1TTt+1sin(2πr1)
翻滚觅食
在这种行为中,食物的位置被视为一个中心点。每个个体倾向于在中心点周围来回游动,并翻滚到一个新的位置。
在这里插入图片描述

x i d ( t + 1 ) = x i d ( t ) + S ⋅ ( r 2 ⋅ x b e s t d − r 3 ⋅ x i d ( t ) ) , i = 1 , … , N x_i^d(t+1)=x_i^d(t)+S\cdot(r_2\cdot x_{best}^d-r_3\cdot x_i^d(t)),i=1,\ldots,N xid(t+1)=xid(t)+S(r2xbestdr3xid(t)),i=1,,N
伪代码
在这里插入图片描述

3.代码实现

% 蝠鲼觅食优化算法
function [Best_pos, Best_fitness, Iter_curve, History_pos, History_best] = MRFO(pop, maxIter,lb,ub,dim,fobj)
%input
%pop 种群数量
%dim 问题维数
%ub 变量上边界
%lb 变量下边界
%fobj 适应度函数
%maxIter 最大迭代次数
%output
%Best_pos 最优位置
%Best_fitness 最优适应度值
%Iter_curve 每代最优适应度值
%History_pos 每代种群位置
%History_best 每代最优个体位置
%% 初始化种群
PopPos = zeros(pop, dim);
for i = 1:dimPopPos(:,i) = lb(i) + (ub(i) - lb(i)) * rand(pop, 1);
end
%% 计算适应度
PopFit = zeros(1, pop);
for i=1:popPopFit(i)=fobj(PopPos(i,:));
end
%% 记录
[MinFitness, MinIdx] = sort(PopFit);
Best_pos = PopPos(MinIdx(1),:);
Best_fitness = MinFitness(1);
%% 迭代
for It = 1:maxIter  Coef = It / maxIter;     if rand<0.5r1=rand;                         Beta=2*exp(r1*((maxIter-It+1)/maxIter))*(sin(2*pi*r1));    if  Coef > rand                                                      newPopPos(1,:)=Best_pos+rand(1,dim).*(Best_pos-PopPos(1,:))+Beta*(Best_pos-PopPos(1,:)); %Equation (4)elseIndivRand=rand(1,dim).*(ub-lb)+lb;                                newPopPos(1,:)=IndivRand+rand(1,dim).*(IndivRand-PopPos(1,:))+Beta*(IndivRand-PopPos(1,:)); %Equation (7)         end              else Alpha=2*rand(1,dim).*(-log(rand(1,dim))).^0.5;           newPopPos(1,:)=PopPos(1,:)+rand(1,dim).*(Best_pos-PopPos(1,:))+Alpha.*(Best_pos-PopPos(1,:)); %Equation (1)endfor i=2:popif rand<0.5r1=rand;                         Beta=2*exp(r1*((maxIter-It+1)/maxIter))*(sin(2*pi*r1));    if  Coef>rand                                                      newPopPos(i,:)=Best_pos+rand(1,dim).*(PopPos(i-1,:)-PopPos(i,:))+Beta*(Best_pos-PopPos(i,:)); %Equation (4)elseIndivRand=rand(1,dim).*(ub-lb)+lb;                                newPopPos(i,:)=IndivRand+rand(1,dim).*(PopPos(i-1,:)-PopPos(i,:))+Beta*(IndivRand-PopPos(i,:));  %Equation (7)       end              elseAlpha=2*rand(1,dim).*(-log(rand(1,dim))).^0.5;           newPopPos(i,:)=PopPos(i,:)+rand(1,dim).*(PopPos(i-1,:)-PopPos(i,:))+Alpha.*(Best_pos-PopPos(i,:)); %Equation (1)end         endfor i=1:pop% 边界检查H_ub=newPopPos(i,:)>ub;H_lb=newPopPos(i,:)<lb;newPopPos(i,:)=(newPopPos(i,:).*(~(H_ub+H_lb)))+ub.*H_ub+lb.*H_lb;  newPopFit(i)=fobj(newPopPos(i,:));    if newPopFit(i)<PopFit(i)PopFit(i)=newPopFit(i);PopPos(i,:)=newPopPos(i,:);endendS=2;for i=1:pop           newPopPos(i,:)=PopPos(i,:)+S*(rand*Best_pos-rand*PopPos(i,:)); %Equation (8)endfor i=1:pop% 边界检查H_ub=newPopPos(i,:)>ub;H_lb=newPopPos(i,:)<lb;newPopPos(i,:)=(newPopPos(i,:).*(~(H_ub+H_lb)))+ub.*H_ub+lb.*H_lb;  newPopFit(i)=fobj(newPopPos(i,:));    if newPopFit(i)<PopFit(i)PopFit(i)=newPopFit(i);PopPos(i,:)=newPopPos(i,:);endendfor i=1:popif PopFit(i)<Best_fitnessBest_fitness=PopFit(i);Best_pos=PopPos(i,:);            endendIter_curve(It)=Best_fitness;History_pos{It} = PopPos;History_best{It} = Best_pos;
end
end

在这里插入图片描述

4.参考文献

[1] Zhao W, Zhang Z, Wang L. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103300.

这篇关于【智能算法】蝠鲼觅食优化算法(MRFO)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/807827

相关文章

C#实现将Excel表格转换为图片(JPG/ PNG)

《C#实现将Excel表格转换为图片(JPG/PNG)》Excel表格可能会因为不同设备或字体缺失等问题,导致格式错乱或数据显示异常,转换为图片后,能确保数据的排版等保持一致,下面我们看看如何使用C... 目录通过C# 转换Excel工作表到图片通过C# 转换指定单元格区域到图片知识扩展C# 将 Excel

基于Java实现回调监听工具类

《基于Java实现回调监听工具类》这篇文章主要为大家详细介绍了如何基于Java实现一个回调监听工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录监听接口类 Listenable实际用法打印结果首先,会用到 函数式接口 Consumer, 通过这个可以解耦回调方法,下面先写一个

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Qt中QGroupBox控件的实现

《Qt中QGroupBox控件的实现》QGroupBox是Qt框架中一个非常有用的控件,它主要用于组织和管理一组相关的控件,本文主要介绍了Qt中QGroupBox控件的实现,具有一定的参考价值,感兴趣... 目录引言一、基本属性二、常用方法2.1 构造函数 2.2 设置标题2.3 设置复选框模式2.4 是否

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法

《springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法》:本文主要介绍springboot整合阿里云百炼DeepSeek实现sse流式打印,本文给大家介绍的非常详细,对大... 目录1.开通阿里云百炼,获取到key2.新建SpringBoot项目3.工具类4.启动类5.测试类6.测

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient