【智能算法】蝠鲼觅食优化算法(MRFO)原理及实现

2024-03-14 08:36

本文主要是介绍【智能算法】蝠鲼觅食优化算法(MRFO)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.代码实现
    • 4.参考文献


1.背景

2017年,Zhao等人受到蝠鲼自然捕食行为启发,提出了蝠鲼觅食优化算法(Manta Ray Foraging Optimization,MRFO)。

2.算法原理

2.1算法思想

MRFO模拟了蝠鲼在海洋中的觅食过程,提出了三种捕食策略链式觅食-螺旋觅食-翻滚觅食

2.2算法过程

链式觅食
蝠鲼可以观察到浮游生物的位置并朝它游去,在一个位置上浮游生物的浓度越高,位置越好(适应度函数)。蝠鲼排成一列,形成觅食链,除了第一个个体外,其他个体不仅朝着食物游去,还朝着它前面的个体游去。在每次迭代中,每个个体都会根据迄今为止找到的最佳解决方案和它前面的解决方案进行更新。
在这里插入图片描述

x i d ( t + 1 ) = { x i d ( t ) + r ⋅ ( x b e s t d ( t ) − x i d ( t ) ) + α ⋅ ( x b e s t d ( t ) − x i d ( t ) ) i = 1 x i d ( t ) + r ⋅ ( x i − 1 d ( t ) − x i d ( t ) ) + α ⋅ ( x b e s t d ( t ) − x i d ( t ) ) i = 2 , … , N x_i^d(t+1)=\begin{cases}x_i^d(t)+r\cdot(x_{best}^d(t)-x_i^d(t))+\alpha\cdot(x_{best}^d(t)-x_i^d(t))&i=1\\x_i^d(t)+r\cdot(x_{i-1}^d(t)-x_i^d(t))+\alpha\cdot(x_{best}^d(t)-x_i^d(t))&i=2,\ldots,N\end{cases} xid(t+1)={xid(t)+r(xbestd(t)xid(t))+α(xbestd(t)xid(t))xid(t)+r(xi1d(t)xid(t))+α(xbestd(t)xid(t))i=1i=2,,N
a a a为控制因子,表述为:
α = 2 ⋅ r ⋅ ∣ l o g ( r ) ∣ \alpha=2\cdot r\cdot\sqrt{|log(r)|} α=2rlog(r)
螺旋觅食
当一群蝠鲼在深水中发现一片浮游生物时,它们会组成一条长长的觅食链,并以螺旋形式向食物游去。(类似于鲸鱼算法(WOA)捕食策略)
在这里插入图片描述

t / T > r a n d 时 t/T>rand时 t/T>rand,此时进行全局探索:
x i d ( t + 1 ) = { x b e s t d + r ⋅ ( x b e s t d ( t ) − x i d ( t ) ) + β ⋅ ( x b e s t d ( t ) − x i d ( t ) ) i = 1 x b e s t d + r ⋅ ( x i − 1 d ( t ) − x i d ( t ) ) + β ⋅ ( x b e s t d ( t ) − x i d ( t ) ) i = 2 , … , N x_i^d(t+1)=\begin{cases}x_{best}^d+r\cdot(x_{best}^d(t)-x_i^d(t))+\beta\cdot(x_{best}^d(t)-x_i^d(t))&i=1\\x_{best}^d+r\cdot(x_{i-1}^d(t)-x_i^d(t))+\beta\cdot(x_{best}^d(t)-x_i^d(t))&i=2,\dots,N\end{cases} xid(t+1)={xbestd+r(xbestd(t)xid(t))+β(xbestd(t)xid(t))xbestd+r(xi1d(t)xid(t))+β(xbestd(t)xid(t))i=1i=2,,N
t / T ≥ r a n d 时 t/T \ge rand时 t/Trand,此时进行局部探索:
x i d ( t + 1 ) = { x r a n d d + r ⋅ ( x r a n d d − x i d ( t ) ) + β ⋅ ( x r a n d d − x i d ( t ) ) i = 1 x r a n d d + r ⋅ ( x i − 1 d ( t ) − x i d ( t ) ) + β ⋅ ( x r a n d d − x i d ( t ) ) i = 2 , … , N \left.x_{i}^{d}(t+1)=\left\{\begin{array}{ll}{{x_{rand}^{d}+r\cdot(x_{rand}^{d}-x_{i}^{d}(t))+\beta\cdot(x_{rand}^{d}-x_{i}^{d}(t))}}&{i=1}\\{{x_{rand}^{d}+r\cdot(x_{i-1}^{d}(t)-x_{i}^{d}(t))+\beta\cdot(x_{rand}^{d}-x_{i}^{d}(t))}}&{i=2,\ldots,N}\end{array}\right.\right. xid(t+1)={xrandd+r(xranddxid(t))+β(xranddxid(t))xrandd+r(xi1d(t)xid(t))+β(xranddxid(t))i=1i=2,,N
β \beta β为控制因子,表述为:
β = 2 e r 1 T − t + 1 T ⋅ sin ⁡ ( 2 π r 1 ) \beta=2e^{r_1\frac{T-t+1}T}\cdot\sin(2\pi r_1) β=2er1TTt+1sin(2πr1)
翻滚觅食
在这种行为中,食物的位置被视为一个中心点。每个个体倾向于在中心点周围来回游动,并翻滚到一个新的位置。
在这里插入图片描述

x i d ( t + 1 ) = x i d ( t ) + S ⋅ ( r 2 ⋅ x b e s t d − r 3 ⋅ x i d ( t ) ) , i = 1 , … , N x_i^d(t+1)=x_i^d(t)+S\cdot(r_2\cdot x_{best}^d-r_3\cdot x_i^d(t)),i=1,\ldots,N xid(t+1)=xid(t)+S(r2xbestdr3xid(t)),i=1,,N
伪代码
在这里插入图片描述

3.代码实现

% 蝠鲼觅食优化算法
function [Best_pos, Best_fitness, Iter_curve, History_pos, History_best] = MRFO(pop, maxIter,lb,ub,dim,fobj)
%input
%pop 种群数量
%dim 问题维数
%ub 变量上边界
%lb 变量下边界
%fobj 适应度函数
%maxIter 最大迭代次数
%output
%Best_pos 最优位置
%Best_fitness 最优适应度值
%Iter_curve 每代最优适应度值
%History_pos 每代种群位置
%History_best 每代最优个体位置
%% 初始化种群
PopPos = zeros(pop, dim);
for i = 1:dimPopPos(:,i) = lb(i) + (ub(i) - lb(i)) * rand(pop, 1);
end
%% 计算适应度
PopFit = zeros(1, pop);
for i=1:popPopFit(i)=fobj(PopPos(i,:));
end
%% 记录
[MinFitness, MinIdx] = sort(PopFit);
Best_pos = PopPos(MinIdx(1),:);
Best_fitness = MinFitness(1);
%% 迭代
for It = 1:maxIter  Coef = It / maxIter;     if rand<0.5r1=rand;                         Beta=2*exp(r1*((maxIter-It+1)/maxIter))*(sin(2*pi*r1));    if  Coef > rand                                                      newPopPos(1,:)=Best_pos+rand(1,dim).*(Best_pos-PopPos(1,:))+Beta*(Best_pos-PopPos(1,:)); %Equation (4)elseIndivRand=rand(1,dim).*(ub-lb)+lb;                                newPopPos(1,:)=IndivRand+rand(1,dim).*(IndivRand-PopPos(1,:))+Beta*(IndivRand-PopPos(1,:)); %Equation (7)         end              else Alpha=2*rand(1,dim).*(-log(rand(1,dim))).^0.5;           newPopPos(1,:)=PopPos(1,:)+rand(1,dim).*(Best_pos-PopPos(1,:))+Alpha.*(Best_pos-PopPos(1,:)); %Equation (1)endfor i=2:popif rand<0.5r1=rand;                         Beta=2*exp(r1*((maxIter-It+1)/maxIter))*(sin(2*pi*r1));    if  Coef>rand                                                      newPopPos(i,:)=Best_pos+rand(1,dim).*(PopPos(i-1,:)-PopPos(i,:))+Beta*(Best_pos-PopPos(i,:)); %Equation (4)elseIndivRand=rand(1,dim).*(ub-lb)+lb;                                newPopPos(i,:)=IndivRand+rand(1,dim).*(PopPos(i-1,:)-PopPos(i,:))+Beta*(IndivRand-PopPos(i,:));  %Equation (7)       end              elseAlpha=2*rand(1,dim).*(-log(rand(1,dim))).^0.5;           newPopPos(i,:)=PopPos(i,:)+rand(1,dim).*(PopPos(i-1,:)-PopPos(i,:))+Alpha.*(Best_pos-PopPos(i,:)); %Equation (1)end         endfor i=1:pop% 边界检查H_ub=newPopPos(i,:)>ub;H_lb=newPopPos(i,:)<lb;newPopPos(i,:)=(newPopPos(i,:).*(~(H_ub+H_lb)))+ub.*H_ub+lb.*H_lb;  newPopFit(i)=fobj(newPopPos(i,:));    if newPopFit(i)<PopFit(i)PopFit(i)=newPopFit(i);PopPos(i,:)=newPopPos(i,:);endendS=2;for i=1:pop           newPopPos(i,:)=PopPos(i,:)+S*(rand*Best_pos-rand*PopPos(i,:)); %Equation (8)endfor i=1:pop% 边界检查H_ub=newPopPos(i,:)>ub;H_lb=newPopPos(i,:)<lb;newPopPos(i,:)=(newPopPos(i,:).*(~(H_ub+H_lb)))+ub.*H_ub+lb.*H_lb;  newPopFit(i)=fobj(newPopPos(i,:));    if newPopFit(i)<PopFit(i)PopFit(i)=newPopFit(i);PopPos(i,:)=newPopPos(i,:);endendfor i=1:popif PopFit(i)<Best_fitnessBest_fitness=PopFit(i);Best_pos=PopPos(i,:);            endendIter_curve(It)=Best_fitness;History_pos{It} = PopPos;History_best{It} = Best_pos;
end
end

在这里插入图片描述

4.参考文献

[1] Zhao W, Zhang Z, Wang L. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103300.

这篇关于【智能算法】蝠鲼觅食优化算法(MRFO)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/807827

相关文章

Java实现将Markdown转换为纯文本

《Java实现将Markdown转换为纯文本》这篇文章主要为大家详细介绍了两种在Java中实现Markdown转纯文本的主流方法,文中的示例代码讲解详细,大家可以根据需求选择适合的方案... 目录方法一:使用正则表达式(轻量级方案)方法二:使用 Flexmark-Java 库(专业方案)1. 添加依赖(Ma

使用EasyExcel实现简单的Excel表格解析操作

《使用EasyExcel实现简单的Excel表格解析操作》:本文主要介绍如何使用EasyExcel完成简单的表格解析操作,同时实现了大量数据情况下数据的分次批量入库,并记录每条数据入库的状态,感兴... 目录前言固定模板及表数据格式的解析实现Excel模板内容对应的实体类实现AnalysisEventLis

使用国内镜像源优化pip install下载的方法步骤

《使用国内镜像源优化pipinstall下载的方法步骤》在Python开发中,pip是一个不可或缺的工具,用于安装和管理Python包,然而,由于默认的PyPI服务器位于国外,国内用户在安装依赖时可... 目录引言1. 为什么需要国内镜像源?2. 常用的国内镜像源3. 临时使用国内镜像源4. 永久配置国内镜

Mybatis从3.4.0版本到3.5.7版本的迭代方法实现

《Mybatis从3.4.0版本到3.5.7版本的迭代方法实现》本文主要介绍了Mybatis从3.4.0版本到3.5.7版本的迭代方法实现,包括主要的功能增强、不兼容的更改和修复的错误,具有一定的参考... 目录一、3.4.01、主要的功能增强2、selectCursor example3、不兼容的更改二、

如何使用C#串口通讯实现数据的发送和接收

《如何使用C#串口通讯实现数据的发送和接收》本文详细介绍了如何使用C#实现基于串口通讯的数据发送和接收,通过SerialPort类,我们可以轻松实现串口通讯,并结合事件机制实现数据的传递和处理,感兴趣... 目录1. 概述2. 关键技术点2.1 SerialPort类2.2 异步接收数据2.3 数据解析2.

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3

Qt把文件夹从A移动到B的实现示例

《Qt把文件夹从A移动到B的实现示例》本文主要介绍了Qt把文件夹从A移动到B的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录如何移动一个文件? 如何移动文件夹(包含里面的全部内容):如何删除文件夹:QT 文件复制,移动(

Flask 验证码自动生成的实现示例

《Flask验证码自动生成的实现示例》本文主要介绍了Flask验证码自动生成的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 目录生成图片以及结果处理验证码蓝图html页面展示想必验证码大家都有所了解,但是可以自己定义图片验证码

VSCode配置Anaconda Python环境的实现

《VSCode配置AnacondaPython环境的实现》VisualStudioCode中可以使用Anaconda环境进行Python开发,本文主要介绍了VSCode配置AnacondaPytho... 目录前言一、安装 Visual Studio Code 和 Anaconda二、创建或激活 conda