本文主要是介绍估计理论(2):多元高斯变量的条件概率密度函数(PDF),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
本节内容摘自Steven M. Kay,《Fundamentals of Statistical Signal Processing: Estimation Theory》。
【定理10.2】多元高斯向量的条件PDF
如果 x ∈ R k × 1 {\bf x}\in \mathbb{R}^{k\times 1} x∈Rk×1和 y ∈ R l × 1 {\bf y}\in \mathbb{R}^{l\times 1} y∈Rl×1为联合高斯分布随机向量,均值向量为 [ E ( x ) E ( x ) ] T [{\rm E}({\bf x})\ {\rm E}({\bf x})]^{\rm T} [E(x) E(x)]T,分块协方差矩阵为
C = [ C x x C x y C y x C y y ] , (10.23) \tag{10.23} {\bf C}= \left[ \begin{matrix} {\bf C}_{xx} & {\bf C}_{xy} \\{\bf C}_{yx}& {\bf C}_{yy}\end{matrix} \right], C=[CxxCyxCxyCyy],(10.23)其中 C x x ∈ R k × k {\bf C}_{xx}\in \mathbb{R}^{k\times k} Cxx∈Rk×k与 C y y ∈ R l × l {\bf C}_{yy}\in \mathbb{R}^{l\times l} Cyy∈Rl×l分别为向量 x \bf x x和 y \bf y y的自协方差阵, C x y ∈ R k × l {\bf C}_{xy}\in \mathbb{R}^{k\times l} Cxy∈Rk×l与 C y x ∈ R l × k {\bf C}_{yx}\in \mathbb{R}^{l\times k} Cyx∈Rl×k为向量 x \bf x x和 y \bf y y的互协方差阵。显然,我们可以得到 x \bf x x和 y \bf y y的联合概率密度函数为
p ( x , y ) = 1 ( 2 π ) k + l 2 d e t 1 2 ( C ) e x p [ − 1 2 ( [ x − E ( x ) y − E ( y ) ] ) T C − 1 ( [ x − E ( x ) y − E ( y ) ] ) ] , p({\bf x},{\bf y})=\frac{1}{(2\pi)^{\frac{k+l}{2}}{\rm det}^{\frac{1}{2}}(\bf C)}{\rm exp}\left[-\frac{1}{2}\left( \left[\begin{matrix}{\bf x}-{\rm E}({\bf x} )\\ {\bf y}-{\rm E}({\bf y})\end{matrix}\right]\right)^{\rm T}{\bf C}^{-1}\left( \left[\begin{matrix}{\bf x}-{\rm E}({\bf x} )\\ {\bf y}-{\rm E}({\bf y})\end{matrix}\right]\right)\right], p(x,y)=(2π)2k+ldet21(C)1exp[−21([x−E(x)y−E(y)])TC−1([x−E(x)y−E(y)])],因此,条件PDF p ( y ∣ x ) p(\bf y|x) p(y∣x)也为高斯的,且
E ( y ∣ x ) = E ( y ) + C y x C x x − 1 ( x − E ( x ) ) (10.24) \tag{10.24} {\rm E}({\bf y|x})={\rm E}({\bf y})+{\bf C}_{yx}{\bf C}^{-1}_{xx}(x-{\rm E}({\bf x})) E(y∣x)=E(y)+CyxCxx−1(x−E(x))(10.24) C y ∣ x = C y y − C y x C x x − 1 C x y . (10.25) \tag{10.25} {\bf C}_{y|x}={\bf C}_{yy}-{\bf C}_{yx}{\bf C}^{-1}_{xx}{\bf C}_{xy}. Cy∣x=Cyy−CyxCxx−1Cxy.(10.25)注意,条件PDF的协方差矩阵并不依赖于 x \bf x x,尽管这个属性通常并不成立。
【附录10A】条件高斯PDF的推导
我们来推导【定理10.2】的结论。显然,我们有
p ( y ∣ x ) = p ( x , y ) p ( x ) = 1 ( 2 π ) k + l 2 d e t 1 2 ( C ) e x p [ − 1 2 ( [ x − E ( x ) y − E ( y ) ] ) T C − 1 ( [ x − E ( x ) y − E ( y ) ] ) ] 1 ( 2 π ) k 2 det 1 2 ( C x x ) exp [ − 1 2 ( x − E ( x ) ) T C x x − 1 ( x − E ( x ) ) ] . \begin{aligned} p({\bf y}|{\bf x})&=\frac{p({\bf x,y})}{p({\bf x})}\\ &=\frac{\frac{1}{(2\pi)^{\frac{k+l}{2}}{\rm det}^{\frac{1}{2}}(\bf C)}{\rm exp}\left[-\frac{1}{2}\left( \left[\begin{matrix}{\bf x}-{\rm E}({\bf x} )\\ {\bf y}-{\rm E}({\bf y})\end{matrix}\right]\right)^{\rm T}{\bf C}^{-1}\left( \left[\begin{matrix}{\bf x}-{\rm E}({\bf x} )\\ {\bf y}-{\rm E}({\bf y})\end{matrix}\right]\right)\right]}{\frac{1}{(2\pi)^{\frac{k}{2}}\det^{\frac{1}{2}}({\bf C}_{xx})}\exp[-\frac{1}{2}({\bf x}-{\rm E}({\bf x}))^{\rm T}{\bf C}_{xx}^{-1}({\bf x}-{\rm E}({\bf x}))]}. \end{aligned} p(y∣x)=p(x)p(x,y)=(2π)2kdet21(Cxx)1exp[−21(x−E(x))TCxx−1(x−E(x))](2π)2k+ldet21(C)1exp[−21([x−E(x)y−E(y)])TC−1([x−E(x)y−E(y)])].令
x = [ I 0 0 0 ] [ x y ] . {\bf x}=\left[ \begin{matrix}{\bf I} & {\bf 0}\\{\bf 0}&{\bf 0}\end{matrix}\right]\left[ \begin{matrix}{\bf x}\\{\bf y}\end{matrix}\right]. x=[I000][xy].下面我们来看分块协方差阵。由于
det ( [ A 11 A 12 A 21 A 22 ] ) = det ( A 11 ) det ( A 22 − A 21 A 11 − 1 A 12 ) , \det\left(\left[ \begin{matrix} {\bf A}_{11} & {\bf A}_{12}\\ {\bf A}_{21} & {\bf A}_{22} \end{matrix} \right]\right)=\det({\bf A}_{11})\det({\bf A}_{22}-{\bf A}_{21}{\bf A}_{11} ^{-1}{\bf A}_{12} ) , det([A11A21A12A22])=det(A11)det(A22−A21A11−1A12),可以得到
det C = det ( C x x ) det ( C y y − C y x C x x − 1 C x y ) , \det {\bf C} =\det({\bf C}_{xx})\det({\bf C}_{yy}-{\bf C}_{yx}{\bf C}_{xx} ^{-1}{\bf C}_{xy}), detC=det(Cxx)det(Cyy−CyxCxx−1Cxy),因此,有
det C det ( C x x ) det ( C y y − C y x C x x − 1 C x y ) . \frac{\det {\bf C}}{\det({\bf C}_{xx})}\det({\bf C}_{yy}-{\bf C}_{yx}{\bf C}_{xx} ^{-1}{\bf C}_{xy}). det(Cxx)detCdet(Cyy−CyxCxx−1Cxy).如果令
Q = [ x − E ( x ) y − E ( y ) ] T C − 1 [ x − E ( x ) y − E ( y ) ] − ( x − E ( x ) ) T C x x − 1 ( x − E ( x ) ) , Q=\left[\begin{matrix}{\bf x}-{\rm E}({\bf x} )\\ {\bf y}-{\rm E}({\bf y})\end{matrix}\right]^{\rm T}{\bf C}^{-1} \left[\begin{matrix}{\bf x}-{\rm E}({\bf x} )\\ {\bf y}-{\rm E}({\bf y})\end{matrix}\right]-({\bf x}-{\rm E}({\bf x}))^{\rm T}{\bf C}_{xx}^{-1}({\bf x}-{\rm E}({\bf x})), Q=[x−E(x)y−E(y)]TC−1[x−E(x)y−E(y)]−(x−E(x))TCxx−1(x−E(x)),我们可以得到
p ( y ∣ x ) = 1 ( 2 π ) l 2 det 1 2 ( C y y − C y x C x x − 1 C x y ) exp ( − 1 2 Q ) . \begin{aligned} p({\bf y}|{\bf x})=\frac{1}{{(2\pi)^{\frac{l}{2}}\det^{\frac{1}{2}}({\bf C}_{yy}-{\bf C}_{yx}{\bf C}_{xx} ^{-1}{\bf C}_{xy})}}\exp\left(-\frac{1}{2}Q\right). \end{aligned} p(y∣x)=(2π)2ldet21(Cyy−CyxCxx−1Cxy)1exp(−21Q).下面我们来求 C − 1 {\bf C}^{-1} C−1,从而得到 Q Q Q。由于对称分块矩阵的逆矩阵有
[ A 11 A 12 A 21 A 22 ] − 1 = [ ( A 11 − A 12 A 22 − 1 A 21 ) − 1 − A 11 − 1 A 12 ( A 22 − A 21 A 11 − 1 A 12 ) − 1 − ( A 22 − A 21 A 11 − 1 A 12 ) − 1 A 21 A 11 − 1 ( A 22 − A 21 A 11 − 1 A 12 ) − 1 ] . \left[ \begin{matrix} {\bf A}_{11} & {\bf A}_{12}\\ {\bf A}_{21} & {\bf A}_{22} \end{matrix} \right]^{-1}=\left[ \begin{matrix} ({\bf A}_{11}-{\bf A}_{12}{\bf A}_{22}^{-1}{\bf A}_{21})^{-1} & -{\bf A}_{11}^{-1}{\bf A}_{12}({\bf A}_{22}-{\bf A}_{21}{\bf A}_{11}^{-1}{\bf A}_{12})^{-1}\\ -({\bf A}_{22}-{\bf A}_{21}{\bf A}_{11}^{-1}{\bf A}_{12})^{-1}{\bf A}_{21}{\bf A}_{11}^{-1} & ({\bf A}_{22}-{\bf A}_{21}{\bf A}_{11}^{-1}{\bf A}_{12})^{-1} \end{matrix} \right]. [A11A21A12A22]−1=[(A11−A12A22−1A21)−1−(A22−A21A11−1A12)−1A21A11−1−A11−1A12(A22−A21A11−1A12)−1(A22−A21A11−1A12)−1].采用这种形式,非对角线元素互为转置,因此逆矩阵是对称的。这是由于 C \bf C C为对称的,因此 C − 1 {\bf C}^{-1} C−1也是对称的。根据逆矩阵性质,我们有
( A 11 − A 12 A 22 − 1 A 21 ) − 1 = A 11 − 1 + A 11 − 1 A 12 ( A 22 − A 21 A 11 − 1 A 12 ) − 1 A 21 A 11 − 1 , ({\bf A}_{11}-{\bf A}_{12}{\bf A}_{22}^{-1}{\bf A}_{21})^{-1}={\bf A}_{11}^{-1}+{\bf A}_{11}^{-1}{\bf A}_{12}({\bf A}_{22}-{\bf A}_{21}{\bf A}_{11}^{-1}{\bf A}_{12})^{-1}{\bf A}_{21}{\bf A}_{11}^{-1}, (A11−A12A22−1A21)−1=A11−1+A11−1A12(A22−A21A11−1A12)−1A21A11−1,因此得到
C − 1 = [ C x x − 1 + C x x − 1 C x y B − 1 C y x C x x − 1 C x x − 1 C x y B − 1 − B − 1 C y x C x x − 1 B − 1 ] , {\bf C}^{-1}=\left[ \begin{matrix} {\bf C}_{xx}^{-1}+{\bf C}_{xx}^{-1}{\bf C}_{xy}{\bf B}^{-1}{\bf C}_{yx}{\bf C}_{xx}^{-1} & {\bf C}_{xx}^{-1}{\bf C}_{xy}{\bf B}^{-1}\\ -{\bf B}^{-1} {\bf C}_{yx}{\bf C}_{xx}^{-1} & {\bf B}^{-1}\end{matrix}\right], C−1=[Cxx−1+Cxx−1CxyB−1CyxCxx−1−B−1CyxCxx−1Cxx−1CxyB−1B−1],其中
B = C y y − C y x C x x − 1 C x y . {\bf B}={\bf C}_{yy}-{\bf C}_{yx}{\bf C}_{xx}^{-1}{\bf C}_{xy}. B=Cyy−CyxCxx−1Cxy.进一步,有
C − 1 = [ I − C x x − 1 C x y 0 I ] [ C x x − 1 0 0 B − 1 ] [ I 0 − C y x C x x − 1 I ] . {\bf C}^{-1}=\left[ \begin{matrix} {\bf I}& -{\bf C}_{xx}^{-1}{\bf C}_{xy} \\ {\bf 0} & {\bf I}\end{matrix}\right] \left[ \begin{matrix} {\bf C}_{xx}^{-1}&{\bf 0} \\ {\bf 0} & {\bf B}^{-1}\end{matrix}\right] \left[ \begin{matrix} {\bf I}& {\bf 0}\\ -{\bf C}_{yx}{\bf C}_{xx}^{-1} & {\bf I}\end{matrix}\right]. C−1=[I0−Cxx−1CxyI][Cxx−100B−1][I−CyxCxx−10I].再令 x ~ = x − E ( x ) {\tilde {\bf x}}={\bf x}-{\rm E}({\bf x}) x~=x−E(x), y ~ = y − E ( y ) {\tilde {\bf y}}={\bf y}-{\rm E}({\bf y}) y~=y−E(y),我们可以得到
Q = [ x ~ y ~ ] T [ I − C x x − 1 C x y 0 I ] [ C x x − 1 0 0 B − 1 ] [ I 0 − C y x C x x − 1 I ] [ x ~ y ~ ] − x ~ T C x x − 1 x ~ = [ x ~ y ~ − C y x C x x − 1 x ~ ] T [ C x x − 1 0 0 B − 1 ] [ x ~ y ~ − C y x C x x − 1 x ~ ] T − x ~ T C x x − 1 x ~ = ( y ~ − C y x C x x − 1 x ~ ) T B − 1 ( y ~ − C y x C x x − 1 x ~ ) \begin{aligned} Q&=\left[ \begin{matrix} {\tilde {\bf x}}\\{\tilde {\bf y}} \end{matrix}\right] ^{\rm T} \left[ \begin{matrix} {\bf I}& -{\bf C}_{xx}^{-1}{\bf C}_{xy} \\ {\bf 0} & {\bf I}\end{matrix}\right] \left[ \begin{matrix} {\bf C}_{xx}^{-1}&{\bf 0} \\ {\bf 0} & {\bf B}^{-1}\end{matrix}\right] \left[ \begin{matrix} {\bf I}& {\bf 0}\\ -{\bf C}_{yx}{\bf C}_{xx}^{-1} & {\bf I}\end{matrix}\right]\left[ \begin{matrix} {\tilde {\bf x}}\\{\tilde {\bf y}} \end{matrix}\right] -{\tilde {\bf x}}^{\rm T}{\bf C}_{xx}^{-1}{\tilde {\bf x}}\\ &=\left[ \begin{matrix} {\tilde {\bf x}}\\ {\tilde {\bf y}-{\bf C}_{yx}{\bf C}_{xx}^{-1}{\tilde {\bf x}}}\end{matrix}\right]^{\rm T} \left[ \begin{matrix} {\bf C}_{xx}^{-1}&{\bf 0} \\ {\bf 0} & {\bf B}^{-1}\end{matrix}\right] \left[ \begin{matrix} {\tilde {\bf x}}\\ {\tilde {\bf y}-{\bf C}_{yx}{\bf C}_{xx}^{-1}{\tilde {\bf x}}}\end{matrix}\right]^{\rm T} -{\tilde {\bf x}}^{\rm T}{\bf C}_{xx}^{-1}{\tilde {\bf x}}\\ &=({\tilde {\bf y}-{\bf C}_{yx}{\bf C}_{xx}^{-1}{\tilde {\bf x}}})^{\rm T}{\bf B}^{-1}{(\tilde {\bf y}}-{\bf C}_{yx}{\bf C}_{xx}^{-1}{\tilde {\bf x}}) \end{aligned} Q=[x~y~]T[I0−Cxx−1CxyI][Cxx−100B−1][I−CyxCxx−10I][x~y~]−x~TCxx−1x~=[x~y~−CyxCxx−1x~]T[Cxx−100B−1][x~y~−CyxCxx−1x~]T−x~TCxx−1x~=(y~−CyxCxx−1x~)TB−1(y~−CyxCxx−1x~)最终,得到
Q = [ y − ( E ( y ) + C y x C x x − 1 ( x − E ( x ) ) ) ] T [ C y y − C y x C x x − 1 C x y ] − 1 [ y − ( E ( y ) + C y x C x x − 1 ( x − E ( x ) ) ) ] . Q=[{\bf y}-({\rm E}({\bf y})+{\bf C}_{yx}{\bf C}_{xx}^{-1}({\bf x}-{\rm E}({\bf x})))]^{\rm T} [{\bf C}_{yy}-{\bf C}_{yx}{\bf C}_{xx}^{-1}{\bf C}_{xy}]^{-1} [{\bf y}-({\rm E}({\bf y})+{\bf C}_{yx}{\bf C}_{xx}^{-1}({\bf x}-{\rm E}({\bf x})))]. Q=[y−(E(y)+CyxCxx−1(x−E(x)))]T[Cyy−CyxCxx−1Cxy]−1[y−(E(y)+CyxCxx−1(x−E(x)))].因此均值和方差分别如(10.24)和(10.25)所示。
这篇关于估计理论(2):多元高斯变量的条件概率密度函数(PDF)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!