【纹理学习】基于BFmatcher/FlannBasedMatcher的SIFT/ORB/SURF在Re-ID的简单实现

本文主要是介绍【纹理学习】基于BFmatcher/FlannBasedMatcher的SIFT/ORB/SURF在Re-ID的简单实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本笔记图片源于网络,仅用于学习用途,联系侵删。

对纹理学习不甚了解,可前往【纹理学习】初探纹理学习

目录

      • 基于BFmatcher的SIFT实现1
      • 基于BFmatcher的SIFT实现2
      • 基于FlannBasedMatcher的SURF实现
      • 基于FlannBasedMatcher的SIFT实现
      • 基于BFMatcher的ORB实现
      • 高清图片实验
      • 一些想法
      • 贴一下“年久失修”的代码(还是可以用的!)
        • 两个不同形式的基于BFmatcher的SIFT
        • 基于FlannBasedMatcher的SURF
        • 基于FlannBasedMatcher的SIFT
        • 基于BFmatcher的ORB
      • 给大家放一下实验原图片

基于BFmatcher的SIFT实现1

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
ratio=0.8
在这里插入图片描述
ratio=0.9
在这里插入图片描述
在这里插入图片描述

基于BFmatcher的SIFT实现2

在这里插入图片描述
在这里插入图片描述
ratio=0.2
在这里插入图片描述
ratio=0.5
在这里插入图片描述
ratio=0.8
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
ratio=whatever
在这里插入图片描述

基于FlannBasedMatcher的SURF实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于FlannBasedMatcher的SIFT实现

在这里插入图片描述
在这里插入图片描述
ratio=0.8
在这里插入图片描述

基于BFMatcher的ORB实现

在这里插入图片描述
在这里插入图片描述
ratio=0.8
在这里插入图片描述
ratio=0.9
在这里插入图片描述
ratio=0.99
在这里插入图片描述

高清图片实验

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

一些想法

当时进行这个实验时间比较紧凑,代码研究不到位,总感觉一些参数是可以优化的。
但毋庸置疑的结论就是这些方法在高清图片上表现优异,面对十分模糊的Re-ID图片显得仓皇失措。
结合一篇去模糊的论文:
【论文笔记】Unsupervised Domain-Specific Deblurring via Disentangled Representations
或许可以通过将去模糊方法应用到整个人体上以实现图片转清晰化,进而运行纹理学习的一些方法进行实验以提高匹配精度,有兴趣的朋友不放尝试一下。

贴一下“年久失修”的代码(还是可以用的!)

两个不同形式的基于BFmatcher的SIFT

One

import cv2
import numpy as npdef sift_kp(image):gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)sift = cv2.xfeatures2d.SIFT_create()kp, des = sift.detectAndCompute(image, None)kp_image = cv2.drawKeypoints(gray_image, kp, None)return kp_image, kp, desdef get_good_match(des1, des2):bf = cv2.BFMatcher()matches = bf.knnMatch(des1, des2, k=2)  # des1为模板图,des2为匹配图matches = sorted(matches, key=lambda x: x[0].distance / x[1].distance)good = []for m, n in matches:if m.distance < 0.9 * n.distance:good.append(m)return goodimg1 = cv2.imread(r'1.png')
img2 = cv2.imread(r'2.png')kpimg1, kp1, des1 = sift_kp(img1)
kpimg2, kp2, des2 = sift_kp(img2)cv2.namedWindow("img1",0)
cv2.resizeWindow("img1", 640, 480)
cv2.imshow('img1',np.hstack((img1,kpimg1)))
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.namedWindow("img2",0)
cv2.resizeWindow("img2", 640, 480)
cv2.imshow('img2',np.hstack((img2,kpimg2)))
cv2.waitKey(0)
cv2.destroyAllWindows()goodMatch = get_good_match(des1, des2)
all_goodmatch_img= cv2.drawMatches(img1, kp1, img2, kp2, goodMatch, None, flags=2)
# goodmatch_img自己设置前多少个goodMatch[:10]
goodmatch_img = cv2.drawMatches(img1, kp1, img2, kp2, goodMatch[:100], None, flags=2)cv2.namedWindow("all_goodmatch_img",0)
cv2.resizeWindow("all_goodmatch_img", 640, 480)
cv2.imshow('all_goodmatch_img', all_goodmatch_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.namedWindow("goodmatch_img",0)
cv2.resizeWindow("goodmatch_img", 640, 480)
cv2.imshow('goodmatch_img', goodmatch_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

Two

import numpy as np
import cv2# 匹配的图片
imgname1 = '1.png'
imgname2 = '2.png'# SIFT特征描述子
sift = cv2.xfeatures2d.SIFT_create()# 读取第一张图像,并做灰度处理
# kp1、des1分别为第一张图像的 keypoints and descriptors
img1 = cv2.imread(imgname1)
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
kp1, des1 = sift.detectAndCompute(img1,None)# 读取第二张图像,并做灰度处理
# kp2、des2分别为第二张图像的 keypoints and descriptors
img2 = cv2.imread(imgname2)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
kp2, des2 = sift.detectAndCompute(img2,None)# 水平拼接两张灰度图像,窗口处理
hmerge = np.hstack((gray1, gray2))
cv2.namedWindow("gray",0)
cv2.resizeWindow("gray", 640, 480)
cv2.imshow("gray", hmerge)
cv2.waitKey(0)
cv2.destroyAllWindows()# 画出特征点,并显示为红色圆圈
img3 = cv2.drawKeypoints(img1,kp1,img1,color=(255,0,255))
img4 = cv2.drawKeypoints(img2,kp2,img2,color=(255,0,255))
hmerge = np.hstack((img3, img4))
cv2.namedWindow("point",0)
cv2.resizeWindow("point", 640, 480)
cv2.imshow("point", hmerge)
cv2.waitKey(0)
cv2.destroyAllWindows()# BFMatcher解决匹配
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1,des2, k=2)
# 调整ratio
good = []
for m,n in matches:if m.distance < 0.8*n.distance:good.append([m])# 绘制匹配结果
img5 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,matches,None,flags=2)
cv2.namedWindow("BFmatch",0)
cv2.resizeWindow("BFmatch", 640, 480)
cv2.imshow("BFmatch", img5)
cv2.waitKey(0)
cv2.destroyAllWindows()
基于FlannBasedMatcher的SURF
import numpy as np
import cv2
from matplotlib import pyplot as pltimgname1 = 't1.jpeg'
imgname2 = 't2.jpeg'surf = cv2.xfeatures2d.SURF_create()FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params,search_params)img1 = cv2.imread(imgname1)
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) #灰度处理图像
kp1, des1 = surf.detectAndCompute(img1,None)#des是描述子img2 = cv2.imread(imgname2)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
kp2, des2 = surf.detectAndCompute(img2,None)hmerge = np.hstack((gray1, gray2)) #水平拼接
cv2.namedWindow("gray",0)
cv2.resizeWindow("gray", 640, 480)
cv2.imshow("gray", hmerge) #拼接显示为gray
cv2.waitKey(0)
cv2.destroyAllWindows()img3 = cv2.drawKeypoints(img1,kp1,img1,color=(255,0,255))
img4 = cv2.drawKeypoints(img2,kp2,img2,color=(255,0,255))hmerge = np.hstack((img3, img4)) #水平拼接
cv2.namedWindow("point",0)
cv2.resizeWindow("point", 640, 480)
cv2.imshow("point", hmerge) #拼接显示为gray
cv2.waitKey(0)
cv2.destroyAllWindows()matches = flann.knnMatch(des1,des2,k=2)good = []
for m,n in matches:if m.distance < 0.8*n.distance:good.append([m])
img5 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
cv2.namedWindow("SURF",0)
cv2.resizeWindow("SURF", 640, 480)
cv2.imshow("SURF", img5)
cv2.waitKey(0)
cv2.destroyAllWindows()
基于FlannBasedMatcher的SIFT
import numpy as np
import cv2
from matplotlib import pyplot as pltimgname1 = '3.png'
imgname2 = '4.png'sift = cv2.xfeatures2d.SIFT_create()# FLANN 参数设计
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params,search_params)img1 = cv2.imread(imgname1)
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) #灰度处理图像
kp1, des1 = sift.detectAndCompute(img1,None)#des是描述子img2 = cv2.imread(imgname2)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
kp2, des2 = sift.detectAndCompute(img2,None)hmerge = np.hstack((gray1, gray2)) #水平拼接
cv2.namedWindow("gray",0)
cv2.resizeWindow("gray", 640, 480)
cv2.imshow("gray", hmerge) #拼接显示为gray
cv2.waitKey(0)
cv2.destroyAllWindows()img3 = cv2.drawKeypoints(img1,kp1,img1,color=(255,0,255))
img4 = cv2.drawKeypoints(img2,kp2,img2,color=(255,0,255))hmerge = np.hstack((img3, img4)) #水平拼接
cv2.namedWindow("point",0)
cv2.resizeWindow("point", 640, 480)
cv2.imshow("point", hmerge) #拼接显示为gray
cv2.waitKey(0)
cv2.destroyAllWindows()
matches = flann.knnMatch(des1,des2,k=2)
matchesMask = [[0,0] for i in range(len(matches))]good = []
for m,n in matches:if m.distance < 0.8*n.distance:good.append([m])img5 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
cv2.namedWindow("FLANN",0)
cv2.resizeWindow("FLANN", 640, 480)
cv2.imshow("FLANN", img5)
cv2.waitKey(0)
cv2.destroyAllWindows()
基于BFmatcher的ORB
import numpy as np
import cv2
from matplotlib import pyplot as pltimgname1 = 'b.png'
imgname2 = 'f.png'orb = cv2.ORB_create()img1 = cv2.imread(imgname1)
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) #灰度处理图像
kp1, des1 = orb.detectAndCompute(img1,None)#des是描述子img2 = cv2.imread(imgname2)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
kp2, des2 = orb.detectAndCompute(img2,None)hmerge = np.hstack((gray1, gray2)) #水平拼接
cv2.namedWindow("gray",0)
cv2.resizeWindow("gray", 640, 480)
cv2.imshow("gray", hmerge) #拼接显示为gray
cv2.waitKey(0)
cv2.destroyAllWindows()img3 = cv2.drawKeypoints(img1,kp1,img1,color=(255,0,255))
img4 = cv2.drawKeypoints(img2,kp2,img2,color=(255,0,255))hmerge = np.hstack((img3, img4)) #水平拼接
cv2.namedWindow("point",0)
cv2.resizeWindow("point", 640, 480)
cv2.imshow("point", hmerge) #拼接显示为gray
cv2.waitKey(0)
cv2.destroyAllWindows()# BFMatcher解决匹配
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1,des2, k=2)
# 调整ratio
good = []
for m,n in matches:if m.distance < 0.99*n.distance:good.append([m])img5 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
cv2.namedWindow("ORB",0)
cv2.resizeWindow("ORB", 640, 480)
cv2.imshow("ORB", img5)
cv2.waitKey(0)
cv2.destroyAllWindows()

给大家放一下实验原图片

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于【纹理学习】基于BFmatcher/FlannBasedMatcher的SIFT/ORB/SURF在Re-ID的简单实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/805355

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja