【纹理学习】基于BFmatcher/FlannBasedMatcher的SIFT/ORB/SURF在Re-ID的简单实现

本文主要是介绍【纹理学习】基于BFmatcher/FlannBasedMatcher的SIFT/ORB/SURF在Re-ID的简单实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本笔记图片源于网络,仅用于学习用途,联系侵删。

对纹理学习不甚了解,可前往【纹理学习】初探纹理学习

目录

      • 基于BFmatcher的SIFT实现1
      • 基于BFmatcher的SIFT实现2
      • 基于FlannBasedMatcher的SURF实现
      • 基于FlannBasedMatcher的SIFT实现
      • 基于BFMatcher的ORB实现
      • 高清图片实验
      • 一些想法
      • 贴一下“年久失修”的代码(还是可以用的!)
        • 两个不同形式的基于BFmatcher的SIFT
        • 基于FlannBasedMatcher的SURF
        • 基于FlannBasedMatcher的SIFT
        • 基于BFmatcher的ORB
      • 给大家放一下实验原图片

基于BFmatcher的SIFT实现1

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
ratio=0.8
在这里插入图片描述
ratio=0.9
在这里插入图片描述
在这里插入图片描述

基于BFmatcher的SIFT实现2

在这里插入图片描述
在这里插入图片描述
ratio=0.2
在这里插入图片描述
ratio=0.5
在这里插入图片描述
ratio=0.8
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
ratio=whatever
在这里插入图片描述

基于FlannBasedMatcher的SURF实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于FlannBasedMatcher的SIFT实现

在这里插入图片描述
在这里插入图片描述
ratio=0.8
在这里插入图片描述

基于BFMatcher的ORB实现

在这里插入图片描述
在这里插入图片描述
ratio=0.8
在这里插入图片描述
ratio=0.9
在这里插入图片描述
ratio=0.99
在这里插入图片描述

高清图片实验

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

一些想法

当时进行这个实验时间比较紧凑,代码研究不到位,总感觉一些参数是可以优化的。
但毋庸置疑的结论就是这些方法在高清图片上表现优异,面对十分模糊的Re-ID图片显得仓皇失措。
结合一篇去模糊的论文:
【论文笔记】Unsupervised Domain-Specific Deblurring via Disentangled Representations
或许可以通过将去模糊方法应用到整个人体上以实现图片转清晰化,进而运行纹理学习的一些方法进行实验以提高匹配精度,有兴趣的朋友不放尝试一下。

贴一下“年久失修”的代码(还是可以用的!)

两个不同形式的基于BFmatcher的SIFT

One

import cv2
import numpy as npdef sift_kp(image):gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)sift = cv2.xfeatures2d.SIFT_create()kp, des = sift.detectAndCompute(image, None)kp_image = cv2.drawKeypoints(gray_image, kp, None)return kp_image, kp, desdef get_good_match(des1, des2):bf = cv2.BFMatcher()matches = bf.knnMatch(des1, des2, k=2)  # des1为模板图,des2为匹配图matches = sorted(matches, key=lambda x: x[0].distance / x[1].distance)good = []for m, n in matches:if m.distance < 0.9 * n.distance:good.append(m)return goodimg1 = cv2.imread(r'1.png')
img2 = cv2.imread(r'2.png')kpimg1, kp1, des1 = sift_kp(img1)
kpimg2, kp2, des2 = sift_kp(img2)cv2.namedWindow("img1",0)
cv2.resizeWindow("img1", 640, 480)
cv2.imshow('img1',np.hstack((img1,kpimg1)))
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.namedWindow("img2",0)
cv2.resizeWindow("img2", 640, 480)
cv2.imshow('img2',np.hstack((img2,kpimg2)))
cv2.waitKey(0)
cv2.destroyAllWindows()goodMatch = get_good_match(des1, des2)
all_goodmatch_img= cv2.drawMatches(img1, kp1, img2, kp2, goodMatch, None, flags=2)
# goodmatch_img自己设置前多少个goodMatch[:10]
goodmatch_img = cv2.drawMatches(img1, kp1, img2, kp2, goodMatch[:100], None, flags=2)cv2.namedWindow("all_goodmatch_img",0)
cv2.resizeWindow("all_goodmatch_img", 640, 480)
cv2.imshow('all_goodmatch_img', all_goodmatch_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.namedWindow("goodmatch_img",0)
cv2.resizeWindow("goodmatch_img", 640, 480)
cv2.imshow('goodmatch_img', goodmatch_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

Two

import numpy as np
import cv2# 匹配的图片
imgname1 = '1.png'
imgname2 = '2.png'# SIFT特征描述子
sift = cv2.xfeatures2d.SIFT_create()# 读取第一张图像,并做灰度处理
# kp1、des1分别为第一张图像的 keypoints and descriptors
img1 = cv2.imread(imgname1)
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
kp1, des1 = sift.detectAndCompute(img1,None)# 读取第二张图像,并做灰度处理
# kp2、des2分别为第二张图像的 keypoints and descriptors
img2 = cv2.imread(imgname2)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
kp2, des2 = sift.detectAndCompute(img2,None)# 水平拼接两张灰度图像,窗口处理
hmerge = np.hstack((gray1, gray2))
cv2.namedWindow("gray",0)
cv2.resizeWindow("gray", 640, 480)
cv2.imshow("gray", hmerge)
cv2.waitKey(0)
cv2.destroyAllWindows()# 画出特征点,并显示为红色圆圈
img3 = cv2.drawKeypoints(img1,kp1,img1,color=(255,0,255))
img4 = cv2.drawKeypoints(img2,kp2,img2,color=(255,0,255))
hmerge = np.hstack((img3, img4))
cv2.namedWindow("point",0)
cv2.resizeWindow("point", 640, 480)
cv2.imshow("point", hmerge)
cv2.waitKey(0)
cv2.destroyAllWindows()# BFMatcher解决匹配
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1,des2, k=2)
# 调整ratio
good = []
for m,n in matches:if m.distance < 0.8*n.distance:good.append([m])# 绘制匹配结果
img5 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,matches,None,flags=2)
cv2.namedWindow("BFmatch",0)
cv2.resizeWindow("BFmatch", 640, 480)
cv2.imshow("BFmatch", img5)
cv2.waitKey(0)
cv2.destroyAllWindows()
基于FlannBasedMatcher的SURF
import numpy as np
import cv2
from matplotlib import pyplot as pltimgname1 = 't1.jpeg'
imgname2 = 't2.jpeg'surf = cv2.xfeatures2d.SURF_create()FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params,search_params)img1 = cv2.imread(imgname1)
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) #灰度处理图像
kp1, des1 = surf.detectAndCompute(img1,None)#des是描述子img2 = cv2.imread(imgname2)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
kp2, des2 = surf.detectAndCompute(img2,None)hmerge = np.hstack((gray1, gray2)) #水平拼接
cv2.namedWindow("gray",0)
cv2.resizeWindow("gray", 640, 480)
cv2.imshow("gray", hmerge) #拼接显示为gray
cv2.waitKey(0)
cv2.destroyAllWindows()img3 = cv2.drawKeypoints(img1,kp1,img1,color=(255,0,255))
img4 = cv2.drawKeypoints(img2,kp2,img2,color=(255,0,255))hmerge = np.hstack((img3, img4)) #水平拼接
cv2.namedWindow("point",0)
cv2.resizeWindow("point", 640, 480)
cv2.imshow("point", hmerge) #拼接显示为gray
cv2.waitKey(0)
cv2.destroyAllWindows()matches = flann.knnMatch(des1,des2,k=2)good = []
for m,n in matches:if m.distance < 0.8*n.distance:good.append([m])
img5 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
cv2.namedWindow("SURF",0)
cv2.resizeWindow("SURF", 640, 480)
cv2.imshow("SURF", img5)
cv2.waitKey(0)
cv2.destroyAllWindows()
基于FlannBasedMatcher的SIFT
import numpy as np
import cv2
from matplotlib import pyplot as pltimgname1 = '3.png'
imgname2 = '4.png'sift = cv2.xfeatures2d.SIFT_create()# FLANN 参数设计
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params,search_params)img1 = cv2.imread(imgname1)
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) #灰度处理图像
kp1, des1 = sift.detectAndCompute(img1,None)#des是描述子img2 = cv2.imread(imgname2)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
kp2, des2 = sift.detectAndCompute(img2,None)hmerge = np.hstack((gray1, gray2)) #水平拼接
cv2.namedWindow("gray",0)
cv2.resizeWindow("gray", 640, 480)
cv2.imshow("gray", hmerge) #拼接显示为gray
cv2.waitKey(0)
cv2.destroyAllWindows()img3 = cv2.drawKeypoints(img1,kp1,img1,color=(255,0,255))
img4 = cv2.drawKeypoints(img2,kp2,img2,color=(255,0,255))hmerge = np.hstack((img3, img4)) #水平拼接
cv2.namedWindow("point",0)
cv2.resizeWindow("point", 640, 480)
cv2.imshow("point", hmerge) #拼接显示为gray
cv2.waitKey(0)
cv2.destroyAllWindows()
matches = flann.knnMatch(des1,des2,k=2)
matchesMask = [[0,0] for i in range(len(matches))]good = []
for m,n in matches:if m.distance < 0.8*n.distance:good.append([m])img5 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
cv2.namedWindow("FLANN",0)
cv2.resizeWindow("FLANN", 640, 480)
cv2.imshow("FLANN", img5)
cv2.waitKey(0)
cv2.destroyAllWindows()
基于BFmatcher的ORB
import numpy as np
import cv2
from matplotlib import pyplot as pltimgname1 = 'b.png'
imgname2 = 'f.png'orb = cv2.ORB_create()img1 = cv2.imread(imgname1)
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) #灰度处理图像
kp1, des1 = orb.detectAndCompute(img1,None)#des是描述子img2 = cv2.imread(imgname2)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
kp2, des2 = orb.detectAndCompute(img2,None)hmerge = np.hstack((gray1, gray2)) #水平拼接
cv2.namedWindow("gray",0)
cv2.resizeWindow("gray", 640, 480)
cv2.imshow("gray", hmerge) #拼接显示为gray
cv2.waitKey(0)
cv2.destroyAllWindows()img3 = cv2.drawKeypoints(img1,kp1,img1,color=(255,0,255))
img4 = cv2.drawKeypoints(img2,kp2,img2,color=(255,0,255))hmerge = np.hstack((img3, img4)) #水平拼接
cv2.namedWindow("point",0)
cv2.resizeWindow("point", 640, 480)
cv2.imshow("point", hmerge) #拼接显示为gray
cv2.waitKey(0)
cv2.destroyAllWindows()# BFMatcher解决匹配
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1,des2, k=2)
# 调整ratio
good = []
for m,n in matches:if m.distance < 0.99*n.distance:good.append([m])img5 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
cv2.namedWindow("ORB",0)
cv2.resizeWindow("ORB", 640, 480)
cv2.imshow("ORB", img5)
cv2.waitKey(0)
cv2.destroyAllWindows()

给大家放一下实验原图片

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于【纹理学习】基于BFmatcher/FlannBasedMatcher的SIFT/ORB/SURF在Re-ID的简单实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/805355

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义