利用高分五号02星高光谱数据进行地物识别

2024-03-13 08:12

本文主要是介绍利用高分五号02星高光谱数据进行地物识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        高分五号02星搭载了一台60公里幅宽、330谱段、30米分辨率的可见短波红外高光谱相机(AHSI),可见近红外(400~1000nm)和短波红外光谱(1000~2500nm)分辨率分别达到5纳米和10纳米。单看参数性能优越,忍不住想试试利用这个数据进行地物识别。

本文介绍利用光谱分析方法从高分五号02星AHSI的反射率影像(可见近红外VN、短波红外SW组合的330个波段影像)上识别一些地物信息,如云层、农作物等地物信息。在ENVI5.6下(ENVI5.3.1及以上版本类似)操作完成,主要包括坏波段标识、端元波谱获取、光谱分析地物识别步骤。

注:可访问 envi.geoscene.cn/envi_license 获取最新ENVI5.6.3软件试用。

1坏波段标识(选做)

        AHSI反射率影像中有一些波段有一些条带噪声(竖条带或者横条带),主要集中在短波红外SW中,如下图所示,这些条带噪声对识别结果有一定影响,得到的结果也可能存在竖条带或者横条带的类别,如果不影响最终应用可忽略。感兴趣的可以尝试用可见近红外VN波段,”坏波段”会更少一些。

图1:部分波段上的条带噪声

可在ENVI中标注为bad bands不参与光谱分析,这些波段目前没有在官方渠道上公布,可通过波谱曲线辨别,如下图所示,有一个波段值非常高鼠标定位到这个点,从左边就可以获取该波段。定位像素点波谱曲线可通过地物识别结果进行定位。

图2:通过像素点波谱曲线定位“坏波段”

(1)显示AHSI反射率影像的图层上右键选择 View metadata,打开Edit metadata。

(2)切换到Spectral选项,在Bad Bands List点击按钮,按住Ctrl选择需要标识Bad bands的波段。这里选择标识202、263、264、271、274、277、269、320、325、326。

(3)点击Ok完成标识。

注:经过FLAASH大气校正的反射率影像上已经自动标识了一些水汽吸收波段为坏波段,这些波段全是0值或者噪声非常大。

图3:标识Bad Bands

2获取端元波谱

端元波谱实际就是需要识别地物的波谱样本,可以通过很多种方式获取,包括标准波谱库、波谱仪实测、影像上获取等。其中影像获取也有多种方式,最简单的方式就是从影像上选择感兴趣区(ROI),获取感兴趣的平均波谱曲线作为端元波谱,本文采用这种方式。

(1)在ENVI中,打开Roi Tool工具,通过目视解译方式绘制需要识别的地物。

(2)通过目视判读,真彩色合成识别和绘制云层、作物1、作物2和作物3 四类需要识别的地物,数量不用太多,需要准确。

注:在绘制云层时候,按住Ctrl+鼠标左键打开魔术棒,使用魔术棒绘制更便捷。

图4:绘制ROI感性兴趣

(3)打开/Classification/Endmember Collection工具,在文件选择对话框中选择AHSI反射率影像。

注:如果影像有背景,可以在此对话框中生成或使用掩膜文件。

(4)在Endmember Collection面板里,选择Import->from ROI/EVF from input file,选择前面选择的感兴趣区。

(5)在Endmember Collection面板里,点击Plot按钮绘制感兴趣的平均波谱曲线。

这里绘制得到的四种地物波谱曲线,三种作物都是未知类型。为了识别三种未知作物类型,一种方法是参照实际调查结果,另外一种方法是用已知的波谱库去识别,采用的工具为/Spectral/Spectral Analyst。这里没有相应的农作物波谱库文件,不对采集的端元波谱做波谱识别。

图5:Endmember Collection面板和平均波谱曲线

3光谱分析地物识别

光谱分析有很多算法,比较常用的是波谱角制图(Spectral Angle Mapper,SAM)。ENVI中可以直接在Endmember Collection中进行SAM分析,也可以打开Classification/Supervised Classification/Spectral Angle Mapper Classification工具。

Endmember Collection中可以预览,还可以分别为每一类单独设置波谱角阈值。本文直接在Endmember Collection中进行SAM地物识别。

(1)接着上一步打开的Endmember Collection面板,选择Algorithm-> Spectral Angle Mapper。

(2)点击Apply,弹出Spectral Angle Mapper参数面板。

  • Set Maximum Angle:设置最大波谱角阈值(0~1.0),以弧度为单位。这里可以统一设置一个阈值,也可以分别为每一类设置阈值。这里阈值越小,识别精度越高。
  • Output Rule Images:是否输出规则文件。规则文件就是生成波谱角为像素值的图像文件,选择输出可以采用密度分割方式进行分类,也可以作为获取阈值的一个参考。

图6:Spectral Angle Mapper参数面板

(3)点击Previw可以预览识别结果,点击OK进行处理。

结果为分类结果文件,可以进行小斑点去除、结果编辑、精度验证、分类转矢量等后续的处理,本文就不进行进一步的介绍。

4 总结

将识别的结果与AHSI反射率影像叠加显示,得益于330多个波段,通过目视判读识别精度还是挺不错的。

图7:SAM识别结果(局部)

原文链接:https://bbs.csdn.net/forums/gisrs?spm=1001.2014.3001.6682

这篇关于利用高分五号02星高光谱数据进行地物识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/804176

相关文章

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应