Elasticsearch为“非查询字段”不建索引index store

2024-03-13 05:38

本文主要是介绍Elasticsearch为“非查询字段”不建索引index store,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文地址:http://blog.csdn.net/zhanlanmg/article/details/50847732

官方文档:index

简章翻译

文末附原文:

索引index 
这个参数可以控制字段应该怎样建索引,怎样查询。它有以下三个可用值: 
· no: 不把此字段添加到索引中,也就是不建索引,此字段不可查询 
· not_analyzed:将字段的原始值放入索引中,作为一个独立的term,它是除string字段以外的所有字段的默认值。 
· analyzed:string字段的默认值,会先进行分析后,再把分析的term结果存入索引中。

那么如果不需要的值,直接在mapping中设置为no就可以了。其它信息参考:store 和 _source field

简要说明:store就是把这个字段单独存储,默认是不存储的,默认存储的是 _source ,只有设置了才会存储,比如,有一个mapping有三个字段,title,subject,content,其中title,subject比较小,而content非常非常大,如果,你的查询结果只需要title,subject而不需要content时,把title,subject单独存储,可以节省很多时间

原文

index 
The index option controls how field values are indexed and, thus, how they are searchable. It accepts three values:

no

Do not add this field value to the index. With this setting, the field will not be queryable.

not_analyzed

Add the field value to the index unchanged, as a single term. This is the default for all fields that support this option except for string fields. not_analyzed fields are usually used with term-level queries for structured search.

analyzed

This option applies only to string fields, for which it is the default. The string field value is first analyzed to convert the string into terms (e.g. a list of individual words), which are then indexed. At search time, the query string is passed through (usually) the same analyzer to generate terms in the same format as those in the index. It is this process that enables full text search.

For example, you can create a not_analyzed string field with the following:

PUT /my_index
{"mappings": {"my_type": {"properties": {"status_code": {"type": "string","index": "not_analyzed"}}}}
}

这篇关于Elasticsearch为“非查询字段”不建索引index store的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/803799

相关文章

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

ural 1026. Questions and Answers 查询

1026. Questions and Answers Time limit: 2.0 second Memory limit: 64 MB Background The database of the Pentagon contains a top-secret information. We don’t know what the information is — you

Mybatis中的like查询

<if test="templateName != null and templateName != ''">AND template_name LIKE CONCAT('%',#{templateName,jdbcType=VARCHAR},'%')</if>

贝壳面试:什么是回表?什么是索引下推?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50+)中,最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格,遇到很多很重要的面试题: 1.谈谈你对MySQL 索引下推 的认识? 2.在MySQL中,索引下推 是如何实现的?请简述其工作原理。 3、说说什么是 回表,什么是 索引下推 ? 最近有小伙伴在面试 贝壳、soul,又遇到了相关的

京东物流查询|开发者调用API接口实现

快递聚合查询的优势 1、高效整合多种快递信息。2、实时动态更新。3、自动化管理流程。 聚合国内外1500家快递公司的物流信息查询服务,使用API接口查询京东物流的便捷步骤,首先选择专业的数据平台的快递API接口:物流快递查询API接口-单号查询API - 探数数据 以下示例是参考的示例代码: import requestsurl = "http://api.tanshuapi.com/a

DAY16:什么是慢查询,导致的原因,优化方法 | undo log、redo log、binlog的用处 | MySQL有哪些锁

目录 什么是慢查询,导致的原因,优化方法 undo log、redo log、binlog的用处  MySQL有哪些锁   什么是慢查询,导致的原因,优化方法 数据库查询的执行时间超过指定的超时时间时,就被称为慢查询。 导致的原因: 查询语句比较复杂:查询涉及多个表,包含复杂的连接和子查询,可能导致执行时间较长。查询数据量大:当查询的数据量庞大时,即使查询本身并不复杂,也可能导致

Mysql高级篇(中)——索引介绍

Mysql高级篇(中)——索引介绍 一、索引本质二、索引优缺点三、索引分类(1)按数据结构分类(2)按功能分类(3) 按存储引擎分类(4) 按存储方式分类(5) 按使用方式分类 四、 索引基本语法(1)创建索引(2)查看索引(3)删除索引(4)ALTER 关键字创建/删除索引 五、适合创建索引的情况思考题 六、不适合创建索引的情况 一、索引本质 索引本质 是 一种数据结构,它用

oracle11.2g递归查询(树形结构查询)

转自: 一 二 简单语法介绍 一、树型表结构:节点ID 上级ID 节点名称二、公式: select 节点ID,节点名称,levelfrom 表connect by prior 节点ID=上级节点IDstart with 上级节点ID=节点值 oracle官网解说 开发人员:SQL 递归: 在 Oracle Database 11g 第 2 版中查询层次结构数据的快速