【Preprocessing数据预处理】之Information Leakage

2024-03-13 01:12

本文主要是介绍【Preprocessing数据预处理】之Information Leakage,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在机器学习中,当使用来自训练数据集之外的信息来创建模型时,就会发生信息泄露。这可能导致在训练期间过于乐观的性能估计,并且可能导致模型在未见数据上表现不佳,因为它可能无法从训练数据泛化到现实世界。

信息泄露的示例

1. 使用测试集进行训练:信息泄露最明显的形式是使用测试集或其任何部分进行训练。测试集应该是完全未见过的数据,以准确衡量模型的性能。

from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier# 生成合成数据集
X, y = make_classification(n_samples=100, n_features=20, random_state=42)# 错误:使用整个数据集进行训练
clf = RandomForestClassifier()
clf.fit(X, y)  # 这包括了测试数据!# 这里的问题是模型在所有数据上训练,包括应该留作测试的数据。

2. 使用整个数据集进行预处理:在将整个数据集分割成训练集和测试集之前,应用数据预处理步骤,如特征缩放、标准化或PCA,可能会导致测试集的信息影响训练过程。

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split# 错误:在训练测试切分前对数据进行缩放
scaler = StandardScaler().fit(X)
X_scaled = scaler.transform(X)# 在缩放后对数据集进行训练和测试切分
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)# 这里的问题是缩放使用了测试集的信息,污染了训练数据。

3. 基于整个数据集的特征工程:基于观察到的整个数据集的模式(而不仅仅是训练集)创建新特征,可能会导致泄露,因为模型会获取有关测试集的微妙线索。

import pandas as pd# 假设 'X' 是一个 DataFrame,我们基于所有数据创建一个新特征
X['new_feature'] = X.mean(axis=1)# 将数据集切分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 问题是创建 'new_feature' 的均值使用了测试集的信息。

4. 交叉验证泄露:当您在交叉验证循环内进行特征选择,但特征选择使用整个数据集而不仅仅是训练折叠中的数据时,就会发生泄露。

如何避免信息泄露

1. 正确的数据分割:在开始任何种类的预处理或分析之前,始终将您的数据分割成训练集和测试集(可能还有验证集)。

2. 管道处理:使用管道确保像缩放和PCA这样的预处理步骤只在训练数据上拟合,然后应用到测试数据而不重新拟合。这防止了模型在训练期间获取有关测试数据的任何信息。

3. 正确地交叉验证:在使用交叉验证时,确保所有预处理和特征选择步骤都在交叉验证循环内部、仅在训练折叠上完成。这意味着对于交叉验证中的每一个折叠,预处理都会重新拟合。

4. 数据管理:拥有严格的数据管理协议,确保测试数据永远不会在模型训练过程中使用。

5. 领域知识和监督:应用领域专业知识以防止在时间序列数据或其他领域特定结构中不经意使用未来信息,这可能引入泄露。

通过对数据管理保持警惕并遵循机器学习的最佳实践,可以避免信息泄露,从而导致更可靠、更具泛化能力的模型。后面我会专门文章讲解如何避免信息泄露。

这篇关于【Preprocessing数据预处理】之Information Leakage的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/803187

相关文章

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数