本文主要是介绍【Preprocessing数据预处理】之Information Leakage,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
在机器学习中,当使用来自训练数据集之外的信息来创建模型时,就会发生信息泄露。这可能导致在训练期间过于乐观的性能估计,并且可能导致模型在未见数据上表现不佳,因为它可能无法从训练数据泛化到现实世界。
信息泄露的示例
1. 使用测试集进行训练:信息泄露最明显的形式是使用测试集或其任何部分进行训练。测试集应该是完全未见过的数据,以准确衡量模型的性能。
from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier# 生成合成数据集
X, y = make_classification(n_samples=100, n_features=20, random_state=42)# 错误:使用整个数据集进行训练
clf = RandomForestClassifier()
clf.fit(X, y) # 这包括了测试数据!# 这里的问题是模型在所有数据上训练,包括应该留作测试的数据。
2. 使用整个数据集进行预处理:在将整个数据集分割成训练集和测试集之前,应用数据预处理步骤,如特征缩放、标准化或PCA,可能会导致测试集的信息影响训练过程。
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split# 错误:在训练测试切分前对数据进行缩放
scaler = StandardScaler().fit(X)
X_scaled = scaler.transform(X)# 在缩放后对数据集进行训练和测试切分
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)# 这里的问题是缩放使用了测试集的信息,污染了训练数据。
3. 基于整个数据集的特征工程:基于观察到的整个数据集的模式(而不仅仅是训练集)创建新特征,可能会导致泄露,因为模型会获取有关测试集的微妙线索。
import pandas as pd# 假设 'X' 是一个 DataFrame,我们基于所有数据创建一个新特征
X['new_feature'] = X.mean(axis=1)# 将数据集切分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 问题是创建 'new_feature' 的均值使用了测试集的信息。
4. 交叉验证泄露:当您在交叉验证循环内进行特征选择,但特征选择使用整个数据集而不仅仅是训练折叠中的数据时,就会发生泄露。
如何避免信息泄露
1. 正确的数据分割:在开始任何种类的预处理或分析之前,始终将您的数据分割成训练集和测试集(可能还有验证集)。
2. 管道处理:使用管道确保像缩放和PCA这样的预处理步骤只在训练数据上拟合,然后应用到测试数据而不重新拟合。这防止了模型在训练期间获取有关测试数据的任何信息。
3. 正确地交叉验证:在使用交叉验证时,确保所有预处理和特征选择步骤都在交叉验证循环内部、仅在训练折叠上完成。这意味着对于交叉验证中的每一个折叠,预处理都会重新拟合。
4. 数据管理:拥有严格的数据管理协议,确保测试数据永远不会在模型训练过程中使用。
5. 领域知识和监督:应用领域专业知识以防止在时间序列数据或其他领域特定结构中不经意使用未来信息,这可能引入泄露。
通过对数据管理保持警惕并遵循机器学习的最佳实践,可以避免信息泄露,从而导致更可靠、更具泛化能力的模型。后面我会专门文章讲解如何避免信息泄露。
这篇关于【Preprocessing数据预处理】之Information Leakage的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!