深度模型中的优化(四)、动量(momentum)和Nesterov动量

2024-03-12 23:30

本文主要是介绍深度模型中的优化(四)、动量(momentum)和Nesterov动量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考 动量(momentum)和Nesterov动量 - 云+社区 - 腾讯云

一、动量

虽然随机梯度下降仍然是非常受欢迎的优化方法,但其学习过程有时会很慢。动量方法旨在加速学习,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。动量算法积累了之前梯度指数级衰减的移动平均,并且继续沿该方向移动。从形式上看,动量算法引入了变量v充当速度角色------它代表参数在参数空间移动的方向和速率。速度被设为负梯度的指数衰减平均。名称动量来自物理类比,根据牛顿运动定律,负梯度是移动参数空间中粒子的力。动量在物理学上定义为质量乘以速度。在动量学习算法中,我们假设是单位质量,因此速度向量v也可以看作粒子的动量。超参数\alpha \in [0,1)决定了之前梯度的贡献衰减得有多快。更新规则如下:

                                                  v\leftarrow \alpha v-\varepsilon \bigtriangledown _{\theta}(\frac{1}{m}\sum^m_{i=1}L(f(x^{(i)};\theta),y^{(i)}))

速度v积累了梯度元素\bigtriangledown _{\theta}(\frac{1}{m}\sum^m_{i=1}L(f(x^{(i)};\theta),y^{(i)}))。相对于\varepsilon\alpha越大,之前梯度对现在方向的影响也越大。带动量的SGD算法如下所示:

Requires:学习率\varepsilon,动量参数\alpha

Requires:初始参数\theta,初始速度v

      while 没有达到停止准则 do

      从训练集中采包含m个样本\{x^{(1)},...,x^{(m)}\}的小批量,对应目标为y^{(i)}

      计算梯度估计:\small g\leftarrow \frac{1}{m}\sum^m_{i=1}L(f(x^{(i)};\theta),y^{(i)})

      计算速度更新:v\leftarrow \alpha v-\varepsilon g

      应用更新:\theta\leftarrow \theta + v

end while

之前,步长只是梯度范数乘以学习率。现在,步长取决于梯度序列的大小和排列。当许多连续的梯度指向指定相同的方向时,步长最大。如果动量算法总是观测到梯度g,那么它只会在方向-g上不停加速,直到达到最终速度,其中步长大小为:

                                                                           \frac{\varepsilon ||g||}{1-\alpha}

因此将动量的超参数视为1/(1-\alpha)有助于理解。例如,\alpha=0.9对应着最大速度10倍于梯度下降算法。

在实践中,\alpha的一般取值为0.5、0.9和0.99和学习率一样,\small \alpha也会随着时间不断调整。一般初初始值是一个较小的值,随后会慢慢变大。随着时间推移调节\alpha没有收缩\small \varepsilon重要。

我们可以将动量算法视为模拟连续时间下牛顿动力学下的粒子。这种物理类比有助于直觉上理解动量和梯度下降算法是如何表现的。粒子在任意时间点的位置由\small \theta(t)给定。粒子会受到净力\small f(t)。该力会导致粒子加速:

                                                                        \small f(t)=\frac{\partial^2 }{\partial t^2}\theta(t)

与其将其视为位置的二阶微分方程,我们不如引入表示粒子在时间t处速度的变量v(f),将牛顿力学重写为一阶微分方程:

                                                                       \small v(t)=\frac{\partial }{\partial t}\theta(t)  

                                                                       \small f(t)=\frac{\partial }{\partial t}v(t)

由此,动量算法包括通过数值模拟求解微分方程。求解微分方程的一个简单数值方法是欧拉方法,通过在每个梯度方向上具有有限的步长来简单模拟该等式的动力学。这解释了动量更新的基本形式,但具体什么是力呢?力正比于代价函数的负梯度\small -\bigtriangledown _\theta J(\theta)。该力推动粒子沿着代价函数表面下坡方向的方向移动。梯度下降算法基于每个梯度简单地更新一步,而使用动量算法的牛顿方案则使用该力改变粒子的速度。我们可以将粒子视作在冰面上滑行的冰球。 每当它沿着表面最陡的部分下降时,它会积累继续在该力方向上滑行的速度,知道其开始向上滑动为止。

另一个力也是必要的。如果代价函数的梯度是唯一的力,那么粒子可能永远不会停下来。想象一下,假设理想情况下冰面没有摩擦,一个冰球从山谷的一端下滑,上升到另一端,永远来回震荡。要解决这个问题,我们添加一个正比于-v(t)的力。在物理术语中,此力对应于粘性阻力,就像例子必须通过一个抵抗介质,如糖浆。这会导致粒子随着时间推移逐渐失去能量,最终收敛到局部极小值点。

为什么要特别适用-v(t)和粘性阻力呢?部分原因是因为-v(t)在数学上的便利------速度的整数幂很容易处理。然而,其他物理系统具有基于速度的其他类型的阻力。例如,颗粒通过空气时会受到正比于速度平方的湍流阻力,而颗粒沿着地面移动时会受到恒定大小的摩擦力,这些选择都不合适。湍流阻力正比于速度的平方,在速度很小时会很弱,不够强到使例子停下来。非零初始值速度的粒子仅收到湍流阻力,会从初始位置永远地移动下去,和初始位置的距离大概正比于O(logt),因此我们必须使用速度较低幂次的力。如果幂次为零,相当于干摩擦,那么力太大了。当代价函数的梯度表示的力很小但非零时,由过幂次为零,相当于摩擦,那么力太强了。当代建很多户的梯度表示的力很小但非零时,由于摩擦导致的阻力会使得粒子在达到局部极小点之前就停下来。粘性阻力避免了这两个问题。它足够弱,可以使梯度引起的运行直到达到最小,但有足够强,使得梯度不够时可以阻止运动。

二、Nesterov动量

受Nesterov加速度算法提出了动量算法的一个变种。这种情况的更新规则如下:

                                                   \small v\leftarrow \alpha-\varepsilon \bigtriangledown _\theta[\frac{1}{m}\sum^m_{i=1}L(f(x^{(i)};\theta),y^{(i)})]

                                                    \small \theta \leftarrow \theta + v

其中参数\small \alpha\small \varepsilon发挥了和标准动量方法中类似的作用。Nesterov动量和标准动量之间的区别体现在梯度计算上。Nesterov动量中,梯度计算在施加当前速度后。因此,Nesterov动量可以解释为往标准动量方法中添加了校正因子。完整的Nesterov动量算法如下所示,

Requires:学习率,动量参数\small \alpha

Requires:初始参数\small \theta,初始速率\small v

      while 没有达到停止准则 do

      从训练集中采包含\tiny m个样本\small \{ x^{(1)},...,x^{(m)}\}的小批量,对应目标为\small y^{(i)}

      应用临时更新:\small \hat{\theta}\leftarrow \alpha v-\varepsilon g

     应用更新:\small \theta\leftarrow \theta + v

end while

在凸批量梯度的情况下,Nesterov动量将额外误差收敛率从\small O(1/k)(\small k步后)或进到\small O(1/k^2),如Nesterov所示。可惜,在随机梯度的情况下,Nesterov动量没有改进收敛效率。

这篇关于深度模型中的优化(四)、动量(momentum)和Nesterov动量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_36670529/article/details/96837620
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/802935

相关文章

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI