stm32F103RCT6使用FFT运算分析波形详解(细致教学)

2024-03-12 22:20

本文主要是介绍stm32F103RCT6使用FFT运算分析波形详解(细致教学),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近学校电赛队伍招新,出的招新题就是低频示波器的。之前一直没有弄懂FFT,借着这次机会实现了一下,做了一个小示波器

  • FFT原理简述

FFT,就是快速傅里叶变换,这个操作能够将时域信号转化成频域信号,然后对信号进行分析

  这样说可能有点抽象。讲细点就是指能够直观的看出来目标信号的频率是多少。x轴坐标本来是表示时间,FFT之后变成了表示频率,就是这个意思

  对于信号处理,FFT之后的结果,波峰一般会出现在我们希望测得信号的频率附近(十分相近)

  • 官方文件解释

stm32官方给了几个用于处理FFT的文件,如图所示:

其中有两个汇编文件两个头文件:汇编文件是定义了FFT的计算函数,我们直接调用即可

cr4_fft_1024_stm32.s是包含了计算1024个点的FFT的函数的汇编文件,另一个汇编文件同理

stm32_dsp.h里面有关于FFT处理函数的声明,我们包含了这个头文件之后直接调用函数即可

补充:stm32_dsp.h当中有一个include的头文件,需要根据情况进行修改,比如说用其他型号板子或者其他库开发的记得要修改,不然编译时会报错

  • 算法解释
//进行FFT运算等操作
void FFT_Wave(void)
{u16 i;float mid_value;while(!ADC_flag){LED1 = !LED1;delay_ms(100);}ADC_flag = 0;//获取最大值最小值adc_value_max = adc_value_min = ADC_buff[1];for(i = 0;i < NPT;i++){//寻找最大值最小值if(ADC_buff[i] >= adc_value_max){adc_value_max = ADC_buff[i];}if(ADC_buff[i] <= adc_value_min){adc_value_min = ADC_buff[i];}//先清空数组fftin[i] = 0;//移位,让后面16位为虚部fftin[i] = ((s16)ADC_buff[i] << 16);}cr4_fft_1024_stm32(fftout,fftin,1024);//FFTGetPowerMag();//计算电压值Vpp_true = (adc_value_max - adc_value_min) * 3.3 / 4096.0;//获得Vpp值mid_value = (adc_value_max + adc_value_min) / 2;for(int i = 0;i < NPT;i++){if(ADC_buff[i] > mid_value){rect_duty++;}}rect_duty = rect_duty / 1024 * 100;
}

这是FFT的主体函数

第一步我们先要等待ADC采集完成,将数据存入数组当中准备进行处理

第二步是在采样值当中寻找最大值和最小值(遍历数组即可)

第三步是对数组进行移位处理(前面的是实部,后面的是虚部,由于我们采集到的电压都是实数,所以虚部都置0)

第四步是使用ST官方提供的函数进行FFT运算,得到运算之后的数组

第五步是根据频谱查找我们信号所对应的频率,也就是对频谱图当中所有的频率进行幅值的比较,找出幅值最大时所对应的频率,即为我们所需要测量的频率,其他的都可以看作噪声

在我们找到该频率之后,不能立刻输出,要与ADC的采样率相乘再除以1024,之后才能得到我们想要的信号频率

GetPowerMag函数定义如下:

void GetPowerMag(void)
{s16 lX,lY;u32 i;float maxmag;for(i = 0;i < NPT / 2;i++){lX = (fftout[i] << 16) >> 16;lY = (fftout[i] >> 16);float X = 1024 * ((float)lX) / 32768;float Y = 1024 * ((float)lY) / 32768;float mag = sqrt(X * X + Y * Y) / 1024;FFT_Mag[i] = (u32)(mag * 65536);}FFT_Mag[0] >>= 1;//频谱图第一个是直流分量,无需乘2for(int i = 0;i < NPT / 2;i++){if((maxmag < FFT_Mag[i]) && (i != 0)){maxmag = FFT_Mag[i];temp = i;}}F_hz = temp * sampling_rate / 1024.0;
}

至此,我们就得到了我们所需信号的频率

鉴于本小白能力有限,如果有纰漏或改进之处,欢迎指正

特别提醒:ADC采样率应遵循奈奎斯特采样定理!采样率不是越高越好(因为采样率太高会降低采样的精度,采样率太低会导致高频信号发生混叠现象)!

这个是上面用到的汇编文件的百度盘分享链接,失效了可以私聊cue我更新

链接:https://pan.baidu.com/s/1n8Hl09SmLhp963-vYbA2iw?pwd=1234 
提取码:1234 

这篇关于stm32F103RCT6使用FFT运算分析波形详解(细致教学)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/802760

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本