026—pandas 根据文本数据提取特征

2024-03-12 03:04

本文主要是介绍026—pandas 根据文本数据提取特征,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在数据处理中,源数据可能具有一定便于记录但又复杂的结构,我们在后续使用数据时还需要进一步进行处理。在本例中,要根据一列数据提取出数据中的相关特征,我们来看看 pandas 是如何完成的。

需求:

  • 以上数据的 a
    列是包含复杂信息的字符串类型列。每个值由连字符连接信息,每个信息由数字和字母组成,数字代表此字母的数量,有些行可能包含多个相同字母。
  • 现在的需求是在数据后边增加一些列,每个字母为一列,值为本行对应字母的数量。
  • 如,索引 0 行,增加 R、A、G 三列,值分别是 13(有两个 R,前边的数字需要相加)、5、4。

二、使用步骤

1.引入库

代码如下(示例):

import pandas as pd

2.读入数据

代码如下(示例):

df = pd.DataFrame({'a': ['6R-5A-4G-7R','2A-4G-3A','8G','1R-9A']})
df

在这里插入图片描述

# 我们先以索引 0 行的 a 列数据为测试字符串编写处理函数。
# 用连字符拆分为列表
val = '6R-5A-4G-7R'.split('-')
val

在这里插入图片描述

# 将每个字母与前边的字母相乘,得到纯字母
val = [(i[-1])*int(i[:-1]) for i in val]
val

在这里插入图片描述

# 将列表所有元素连接为一个字符串
val = ''.join(val)
val

在这里插入图片描述

# 构造 Counter 对象
from collections import Counter
val = Counter(val)
val

在这里插入图片描述

# 以上构造的 Counter 对象,它可以帮助我们计算字符串(可迭代对象)里元素的个数,形成一个我们想要字典形式。它是字典的一个子类:
isinstance(val, dict)

在这里插入图片描述

Counter.mro()

在这里插入图片描述

# 接下来,将以上处理过程封装为一个函数:
from collections import Counterdef func(val: str):val = val.split('-')val = [(i[-1])*int(i[:-1]) for i in val]val = ''.join(val)val = Counter(val)return val
# a 列应用这个函数并车为列表:
df.a.map(func).to_list()

在这里插入图片描述

# 构造为 DataFrame,将空值填充为 0 并转为整型:
right = (pd.DataFrame(df.a.map(func).to_list()).fillna(0).astype(int)
)
right

在这里插入图片描述

# 这样就生成了右表数据,最后源数据与右表数据合并:
df.merge(right, left_index=True, right_index=True)

在这里插入图片描述

总结

以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

这篇关于026—pandas 根据文本数据提取特征的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/799948

相关文章

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

解读Pandas和Polars的区别及说明

《解读Pandas和Polars的区别及说明》Pandas和Polars是Python中用于数据处理的两个库,Pandas适用于中小规模数据的快速原型开发和复杂数据操作,而Polars则专注于高效数据... 目录Pandas vs Polars 对比表使用场景对比Pandas 的使用场景Polars 的使用

Linux使用cut进行文本提取的操作方法

《Linux使用cut进行文本提取的操作方法》Linux中的cut命令是一个命令行实用程序,用于从文件或标准输入中提取文本行的部分,本文给大家介绍了Linux使用cut进行文本提取的操作方法,文中有详... 目录简介基础语法常用选项范围选择示例用法-f:字段选择-d:分隔符-c:字符选择-b:字节选择--c

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt