026—pandas 根据文本数据提取特征

2024-03-12 03:04

本文主要是介绍026—pandas 根据文本数据提取特征,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在数据处理中,源数据可能具有一定便于记录但又复杂的结构,我们在后续使用数据时还需要进一步进行处理。在本例中,要根据一列数据提取出数据中的相关特征,我们来看看 pandas 是如何完成的。

需求:

  • 以上数据的 a
    列是包含复杂信息的字符串类型列。每个值由连字符连接信息,每个信息由数字和字母组成,数字代表此字母的数量,有些行可能包含多个相同字母。
  • 现在的需求是在数据后边增加一些列,每个字母为一列,值为本行对应字母的数量。
  • 如,索引 0 行,增加 R、A、G 三列,值分别是 13(有两个 R,前边的数字需要相加)、5、4。

二、使用步骤

1.引入库

代码如下(示例):

import pandas as pd

2.读入数据

代码如下(示例):

df = pd.DataFrame({'a': ['6R-5A-4G-7R','2A-4G-3A','8G','1R-9A']})
df

在这里插入图片描述

# 我们先以索引 0 行的 a 列数据为测试字符串编写处理函数。
# 用连字符拆分为列表
val = '6R-5A-4G-7R'.split('-')
val

在这里插入图片描述

# 将每个字母与前边的字母相乘,得到纯字母
val = [(i[-1])*int(i[:-1]) for i in val]
val

在这里插入图片描述

# 将列表所有元素连接为一个字符串
val = ''.join(val)
val

在这里插入图片描述

# 构造 Counter 对象
from collections import Counter
val = Counter(val)
val

在这里插入图片描述

# 以上构造的 Counter 对象,它可以帮助我们计算字符串(可迭代对象)里元素的个数,形成一个我们想要字典形式。它是字典的一个子类:
isinstance(val, dict)

在这里插入图片描述

Counter.mro()

在这里插入图片描述

# 接下来,将以上处理过程封装为一个函数:
from collections import Counterdef func(val: str):val = val.split('-')val = [(i[-1])*int(i[:-1]) for i in val]val = ''.join(val)val = Counter(val)return val
# a 列应用这个函数并车为列表:
df.a.map(func).to_list()

在这里插入图片描述

# 构造为 DataFrame,将空值填充为 0 并转为整型:
right = (pd.DataFrame(df.a.map(func).to_list()).fillna(0).astype(int)
)
right

在这里插入图片描述

# 这样就生成了右表数据,最后源数据与右表数据合并:
df.merge(right, left_index=True, right_index=True)

在这里插入图片描述

总结

以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

这篇关于026—pandas 根据文本数据提取特征的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/799948

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者