图文证明 洛必达法则

2024-03-12 00:10
文章标签 图文 证明 法则 洛必达

本文主要是介绍图文证明 洛必达法则,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

洛必达法则

洛必达法则

洛必达法则:
如果在极限计算中遇到 0 0 \frac{0}{0} 00 ∞ ∞ \frac{\infty}{\infty} 的形式,可以使用该法则进行简化。

lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ′ ( x ) g ′ ( x ) \lim_{{x \to a}} \frac{f(x)}{g(x)} = \lim_{{x \to a}} \frac{f'(x)}{g'(x)} xalimg(x)f(x)=xalimg(x)f(x)

其中, f ′ ( x ) f'(x) f(x) g ′ ( x ) g'(x) g(x)分别表示 f ( x ) f(x) f(x) g ( x ) g(x) g(x)的导数。

可见,洛必达法则的核心功能就是,大大简化了极限运算。

  • 为什么洛必达法则对于 0 0 \frac{0}{0} 00型和 ∞ ∞ \frac{\infty}{\infty}
    生效?
  • 洛必达法则对于别的类型是否生效?

引入切线

斜率的概念;
a 点的斜率可以表示为:
lim ⁡ x → a f ( x ) − f ( a ) x − a \lim_{{x \to a}} \frac{f(x)-f(a)}{x-a} xalimxaf(x)f(a)
请添加图片描述
由图可以看出,B靠近a点时候的变化
割线的极限即是切线

构建关键函数

令函数: u ( x ) = u ( g ( x ) , f ( x ) ) u(x)=u(g(x),f(x)) u(x)=u(g(x),f(x))
根据切线的表示方法g(x) 为 x,f(x) 为 y,可以得a处的斜率为:
u ′ ( a ) = f ( x ) − f ( a ) g ( x ) − g ( a ) u'(a) = \frac{f(x)-f(a)}{g(x)-g(a)} u(a)=g(x)g(a)f(x)f(a)
对上下同时除 x-a:
u ′ ( a ) = f ( x ) − f ( a ) x − a ⋅ x − a g ( x ) − g ( a ) u'(a) = \frac{f(x)-f(a)}{x-a} \cdot \frac{x-a}{g(x)-g(a)} u(a)=xaf(x)f(a)g(x)g(a)xa
我们将前后分开看,还是根据斜率表达式可得:
u ′ ( a ) = f ′ ( a ) ⋅ 1 g ′ ( a ) u'(a)=f'(a) \cdot \frac{1}{g'(a)} u(a)=f(a)g(a)1
所以得出一点的斜率为:
u ′ ( x ) = f ′ ( x ) g ′ ( x ) u'(x)= \frac{f'(x)}{g'(x)} u(x)=g(x)f(x)

对于函数u(x)上任意一点和原点的连线 l l l 的斜率:
请添加图片描述

l ′ ( x ) = f ( x ) g ( x ) l'(x)= \frac{f(x)}{g(x)} l(x)=g(x)f(x)
我们要证明这个:
lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ′ ( x ) g ′ ( x ) \lim_{{x \to a}} \frac{f(x)}{g(x)} = \lim_{{x \to a}} \frac{f'(x)}{g'(x)} xalimg(x)f(x)=xalimg(x)f(x)
现在已经有了 f ( x ) g ( x ) \frac{f(x)}{g(x)} g(x)f(x) f ′ ( x ) g ′ ( x ) \frac{f'(x)}{g'(x)} g(x)f(x)的两个式子了

证明 为什么洛必达法则对于 0 0 \frac{0}{0} 00型生效?

f ( x ) g ( x ) \frac{f(x)}{g(x)} g(x)f(x)是原点线的斜率
f ′ ( x ) g ′ ( x ) \frac{f'(x)}{g'(x)} g(x)f(x)是某点处的斜率

请添加图片描述
B,C两点是来确定切线的就如同上面引入的切线公式一样
B,C两点确定的切线就是 f ′ ( x ) g ′ ( x ) \frac{f'(x)}{g'(x)} g(x)f(x)是某点处的斜率
黑色的函数是 f ( x ) g ( x ) \frac{f(x)}{g(x)} g(x)f(x)是原点线的斜率
根据这个动图我们可以看出,在过原点的时候,两条线直接重合,而接近原点时其实就是f(x),g(x)趋近0时
所以有当上下都趋于0时有:
0 0 \frac{0}{0} 00的形式,可以使用该法则进行简化。
lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ′ ( x ) g ′ ( x ) \lim_{{x \to a}} \frac{f(x)}{g(x)} = \lim_{{x \to a}} \frac{f'(x)}{g'(x)} xalimg(x)f(x)=xalimg(x)f(x)

证明 为什么洛必达法则对于 ∞ ∞ \frac{\infty}{\infty} 型生效?

在欧式几何中,两条线的斜率要相等,只有两种情况,重合或者平行。
这就是 ∞ ∞ \frac{\infty}{\infty} 型为什么适用于洛必达法则的原因,我们来一起推导一下。
前面证明 0 0 \frac{0}{0} 00型,就是因为趋向于0时发生了重合斜率相等
请添加图片描述
∞ ∞ \frac{\infty}{\infty} 型要证明洛必达,也要证明趋向于 ∞ {\infty} 时两条线的斜率要相等
首先有一个有趋向于 ∞ {\infty} 的函数 x 2 x^2 x2

请添加图片描述
0 0 \frac{0}{0} 00型一样的图像证明
B,C两点是来确定切线的就如同上面引入的切线公式一样
B,C两点确定的切线就是 f ′ ( x ) g ′ ( x ) \frac{f'(x)}{g'(x)} g(x)f(x)是某点处的斜率
黑色的函数是 f ( x ) g ( x ) \frac{f(x)}{g(x)} g(x)f(x)是原点线的斜率
根据这个动图我们可以看出,在趋向于 ∞ {\infty} 的时候,两条线平行,而接近 ∞ {\infty} 时其实就是f(x),g(x)趋近 ∞ {\infty}
所以有当上下都趋于 ∞ {\infty} 时有:
∞ ∞ \frac{{\infty}}{{\infty}} 的形式,可以使用该法则进行简化。
lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ′ ( x ) g ′ ( x ) \lim_{{x \to a}} \frac{f(x)}{g(x)} = \lim_{{x \to a}} \frac{f'(x)}{g'(x)} xalimg(x)f(x)=xalimg(x)f(x)

洛必达法则对于别的类型是否生效?

根据上面的证明过程可以发现
只要原点线和割线斜率相等,就可以运用洛必达法则

参考文章

【洛必达法则】的动画证明+深入理解

这篇关于图文证明 洛必达法则的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/799531

相关文章

SigLIP——采用sigmoid损失的图文预训练方式

SigLIP——采用sigmoid损失的图文预训练方式 FesianXu 20240825 at Wechat Search Team 前言 CLIP中的infoNCE损失是一种对比性损失,在SigLIP这个工作中,作者提出采用非对比性的sigmoid损失,能够更高效地进行图文预训练,本文进行介绍。如有谬误请见谅并联系指出,本文遵守CC 4.0 BY-SA版权协议,转载请联系作者并注

CentOS 7 x64下安装MySql5.7图文详解

参考: https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/ http://www.jianshu.com/p/7cccdaa2d177 http://www.linuxidc.com/Linux/2016-09/135288.htm 最近搞了台阿里云服务器,搭载的是CentOS 7系统,这里记录下mysql5.7的安装流程 查

Jenkins+Svn+Vue自动化构建部署前端项目(保姆级图文教程)

目录 介绍 准备工作 配置jenkins 构建部署任务 常见问题 介绍 在平常开发前端vue项目时,我们通常需要将vue项目进行打包构建,将打包好的dist目录下的静态文件上传到服务器上,但是这种繁琐的操作是比较浪费时间的,可以使用jenkins进行自动化构建部署前端vue 准备工作 准备vue项目,服务器,linux,ubuntu,centos等都可以,服务器上已经

一种极简的余弦定理证明方法

余弦定理的证明方法有很多种,这里介绍一种极简的证明方法。该方法是本人在工作中推导公式,无意中发现的。证明非常简单,下面简单做下记录。   如上图为任意三角形ABC,以点C为原点,建立直角坐标系(x轴方向任意,y轴与x轴垂直),x轴与CB夹角为 θ 1 \theta_1 θ1​,x轴与CA夹角为 θ 2 \theta_2 θ2​。点B的坐标为 ( a c o s θ 1 , a s i n θ

fl studio24.1.1.4285中文版怎么破解?FL Studio 2024安装破解使用图文教程

fl studio24.1.1.4285中文破解版是一款功能强大的编曲软件,也就是众所熟知的水果软件。它可以编曲、剪辑、录音、混音,让您的计算机成为全功能录音室。除此之外,这款软件功能非常强大,为用户提供了许多音频处理工具,包含了编排,录制,编辑,混音和掌握专业品质音乐所需的一切,支持多音轨录音时间拉伸和音高移动原始音频编辑。本身也可以作为VSTi或DXi的插件,Cubase、Logic、Orio

任务栏透明怎么设置?适配最新版 Windows 电脑的方法介绍(图文教程)

电脑任务栏作为Windows操作系统中的一个重要组件,部分用户对于任务栏的了解比较少,经常会遇到任务栏消失、任务栏透明度不会设置的问题。本文一一给大家科普关于Windows任务栏的知识,以及设置任务栏透明的技巧。 一、什么是任务栏 电脑任务栏指的是屏幕下的小长条,由左到右分别包括了:开始、搜索、应用程序区、托盘区、音量、网络设置、输入法、日历等内容组成 主要作用: 1、启动和切换应用程

零知识证明-ZK-SNARKs基础(七)

前言 这章主要讲述ZK-SNARKs 所用到的算术电路、R1CS、QAP等 1:算术电路 算术运算电路 1>半加器:实现半加运算的逻辑电路 2>全加器:能进行被加数,加数和来自低位的进位信号相加,并根据求和结果给出该位的进位信号 说明:2进制加,低位进位 相当于 结果S为 = A+B+C(地位进位) 高位进位 = A+B+C(地位进位) 三个中 有最少2个为1 高位就有进位了 【1】 方程转算

最新版php进销存系统源码 ERP进销存专业化管理 永久免费升级更新+完整图文搭建教程

在当今信息化时代,企业管理的高效性与精确性是企业竞争力的关键。分享一款最新版的PHP进销存系统源码,一款专为企业设计的ERP进销存管理工具,其丰富的功能、灵活的子账号设置、强大的权限控制、以及独家升级的合同管理和报价单打印功能,可以为企业提供了全方位、一体化的解决方案,含完整的图文搭建教程,新手也能轻松搞定搭建部署。 部分代码示例展示: 一、ERP进销存系统源码的功能介绍 1. 子账号与

使用Qdrant + CNCLIP + Gradio 实现图文检索

使用Qdrant + CNCLIP + Gradio 实现图文检索 效果 1、数据准备 下载链接:图文检索图片数据 import base64import pandas as pdfrom io import BytesIOfrom PIL import Imageimport osdata_path = "./data/MR_valid_imgs.tsv"save_dir

云WAF在安全审计和合规性证明方面起到什么作用?

云WAF在安全审计和合规性证明方面起到什么作用? 云WAF的基本功能 云WAF(Cloud Web Application Firewall)是一种部署在云端的网络安全解决方案,它能够为Web应用程序提供强有力的保护,通过检测和阻止恶意流量、攻击和漏洞,确保Web应用程序的安全性和可用性。云WAF具备访问控制、网络安全审计、漏洞检测、应用安全保护、数据安全监控和审计等功能,这些功能共同构成了一