OpenCV(六)——对于图片的算术运行、图片的叠加操作、多通道图像拆分为多个单通道图像

本文主要是介绍OpenCV(六)——对于图片的算术运行、图片的叠加操作、多通道图像拆分为多个单通道图像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在OpenCV中,可以对于图片进行算法运算。我们知道,图像的本质其实就是矩阵,因此对于图像的算数运算本质上就是对于矩阵的算术运算。在OpenCV可以对图像进行算术运算的操作有加、减、乘、除等操作。

图像的加、减、乘、除操作

两张图像可以进行算术运算操作,即对两图像的矩阵进行加减操作。例如,文件夹中有两张图片:

现在想把这两张图像加起来,首先先获取两张图片的行数和列数:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg1=cv2.imread(r'D:\Photo\1.jpeg')
img2=cv2.imread(r'D:\Photo\2.jpeg')
print(img1.shape)
print(img2.shape)

运行结果如下所示:

(500, 500, 3)
(500, 667, 3)

 可以看到两张图片的行数相等,但是列数第二张图片的列数较大,因此在如果两个图像要进行算术运算操作,需要行数和列数需要保持一致,因此只能将图像截取。

(1)将上面两张图片进行相加操作:

import cv2
import matplotlib.pyplot as plt
import numpy as npimage_dog=cv2.imread(r'D:\Photo\1.jpeg')
image_cat=cv2.imread(r'D:\Photo\2.jpeg')
image_cat=cv2.resize(image_cat,(500,500))
image_new=image_cat+image_dog
cv2.imshow('image_new',image_new)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

可以看到,图片的所运行出来的结果就是每一个像素进行叠加,运行出来的结果为上图所示。

(2)同样,也可以进行相减的操作,只需要将上面代码中的image_new=image_cat-image_dog即可。即为:

image_new=image_cat-image_dog

运行结果如下所示:

(3)同样,也可以进行相乘的操作,只需要将上面代码中的image_new=image_cat*image_dog即可。

image_new=image_cat*image_dog

运行结果如下所示:

由于相乘结果数值相差较大,因此所得到的结果比较混乱。 

(4)图像的算数操作同样可以对数进行操作,例如将图像所对应的矩阵里的数全部除以2,代码为:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg_dog=cv2.imread(r'D:\Photo\1.jpeg')
res=img_dog//2
plt.imshow(res)

运行结果为:

通过图片可以看出图片整体变暗了,原因是图片对应的矩阵的值变为原来的一半。 

图片的叠加

(1)图片不可以这样简单地进行算数运算,同时也可以进行叠加(即为图像的加权融合),在OpenCV使用cv2.addWeigthed()进行叠加。在cv2.addWeighted()中,至少需要输入四个参数,即为第一个需要加权融合的图片,第一个图片所占的权重,第二个需要加权融合的图片,第二个图片所占的权重,例如:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg_dog=cv2.imread(r'D:\Photo\1.jpeg')
img_cat=cv2.imread(r'D:\Photo\2.jpeg')
img_cat=cv2.resize(img_cat,(500,500))
res=cv2.addWeighted(img_cat,0.5,img_dog,0.5,0)
plt.imshow(res)

运行效果如下所示:

(2)此时两张图片的权重各占0.5,如果修改权重,将image_cat改为0.7,image_dog改为0.3,那么只需修改代码:

res=cv2.addWeighted(img_cat,0.7,img_dog,0.3,0)

运行效果为:

可以看到,当image_cat为0.7,image_dog为0.3的时候,可以看到猫的图片占据了主导地位。

(3)需要说明的是,图片的叠加可以用图片的算术操作完成,例如加权融合的权重为0.5时,下面两句代码效果等效:

res=cv2.addWeighted(img_1,0.5,img_2,0.5,0)
res=img_1//2+img_1//2

用上面的例子进行验证:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg_dog=cv2.imread(r'D:\Photo\1.jpeg')
img_cat=cv2.imread(r'D:\Photo\2.jpeg')
img_cat=cv2.resize(img_cat,(500,500))
res1=cv2.addWeighted(img_cat,0.5,img_dog,0.5,0)
res2=img_cat//2+img_dog//2
cv2.imshow('res1',res1)
cv2.imshow('res2',res2)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行效果如下所示:

可以看到完全相同,所以对图片进行融合的时候两种方法都可以。

多通道图像拆分为多个单通道图像

在OpenCV中利用cv2.split()将多个颜色通道图像(例如BGR格式的彩色图像)拆分为多个单独的灰色图像,每个灰度图像代表原图像的一个颜色通道。

注:split()函数需要完成三个任务:

  • 通道分离:它可以将一个三通道的BGR图像分离成三个单通道的灰度图像,分别是蓝色、绿色和红色通道。
  • 数据结构:split()函数可以接受两种类型的输出参数,一种是Mat数组,另一种是std::vector<Mat>。在Python中,通常使用numpy数组来接收分离后的通道。
  • 使用方式:当你有一个Mat对象表示的图像时,可以调用split()函数并传入该对象以及一个用于存放结果的数组或向量。这样,原图像的每个通道就会被提取出来并存储在指定的位置。

例如:

import cv2
import matplotlib.pyplot as plt
import numpy as np#颜色通道提取
img=cv2.imread(r'D:\Photo\1.jpeg')
b,g,r=cv2.split(img)
print('b通道\n')
print(b)
print('g通道\n')
print(g)
print('r通道\n')
print(r)

 运行结果为:

b通道[[186 186 186 ...  30  41  34][186 186 186 ...  39  46  36][186 186 186 ...  39  41  29]...[160 161 165 ...  37  59 101][160 161 163 ...  42  39  62][154 155 157 ...  62  40  52]]
g通道[[118 118 118 ...  51  61  54][118 118 118 ...  59  66  56][118 118 118 ...  59  61  49]...[177 178 181 ...  73  95 137][177 178 180 ...  76  72  96][171 172 173 ...  96  74  85]]
r通道[[ 70  70  70 ...  45  55  48][ 70  70  70 ...  53  60  51][ 70  70  70 ...  53  55  44]...[188 189 192 ...  81 103 145][188 189 191 ...  84  81 104][182 183 184 ... 104  82  93]]

通过上面结果可以看到一张RGB图像分成了三个通道,每个通道有不同的数据内容。而不同颜色通道的图片是什么样子的呢?下面我们分别展示B、G、R通道:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg=cv2.imread(r'D:\Photo\1.jpeg')
#只保留R通道
cur_img1=img.copy()
cur_img1[:,:,0]=0
cur_img1[:,:,1]=0
#只保留G通道
cur_img2=img.copy()
cur_img2[:,:,0]=0
cur_img2[:,:,2]=0
#只保留B通道
cur_img3=img.copy()
cur_img3[:,:,1]=0
cur_img3[:,:,2]=0
cv2.imshow('R通道',cur_img1)
cv2.imshow('G通道',cur_img2)
cv2.imshow('B通道',cur_img3)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如下所示:

上面通道所展示的结果是B通道、G通道、R通道所呈现的内容。

这篇关于OpenCV(六)——对于图片的算术运行、图片的叠加操作、多通道图像拆分为多个单通道图像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/797207

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4