【MATLAB第100期】基于MATLAB的多种改进拉丁超立方LHS数据抽样方法

2024-03-11 00:20

本文主要是介绍【MATLAB第100期】基于MATLAB的多种改进拉丁超立方LHS数据抽样方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【MATLAB第100期】基于MATLAB的多种改进拉丁超立方LHS数据抽样方法

在这里插入图片描述

一、LHS种类

1、LHS

使用随机搜索生成拉丁超立方体样本。LHS函数特别适用于非常大的设计,当本机MATLAB函数内存不足时。这可能取决于MATLAB版本和所用机器的配置。当尝试运行“lhsdesign”但未成功时,此功能最有用。设计的每一行代表一个点(或样本)。设计变量被规范化,使得超立方体点的值在0和1之间。它使用最大帧间距离算法进行迭代。

2、OLHS

OLHS生成优化的拉丁超立方体样本。它使用Jin等人(2005)提出的增强随机进化算法(ESEA)或Bates等人(2004)提出的遗传算法(GA)来解决优化问题。设计的每一行代表一个运行(或示例)。设计变量被规范化,使得超立方体点的值在0和1之间。

在ESEA和GA策略中,由于用于解决优化问题的启发式优化技术的随机性,所获得的实验设计可能会从一次运行更改为另一次运行。

参考文献:
Jin R, Chen W and Sudjianto A, “An efficient algorithm for constructing optimal design of computer experiments,” Journal of Statistical Planning
and Inference, Vol. 134, pp 268 287, 2005.

Bates SJ, Sienz J, and Toropov VV, “Formulation of the optimal Latin
hypercube design of experiments using a permutation genetic algorithm,”
45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, CA, 19 22 April 2004. AIAA-2004-2011.

3、TPLHS

LHS=TPLHS(nPoints,nDV,seed)
TPLHS通过使用平移传播算法(TPA)生成拉丁超立方体设计。目标是在不使用形式优化的情况下获得最优(或接近最优)拉丁超立方体设计。该过程需要最少的计算工作量,并且结果实际上是实时提供的。该算法利用点位置模式,基于PHIp准则(最大距离准则的变体)进行最优拉丁超立方体设计。由一个或多个点组成的小构建块(称为SEED)用于通过在超空间中的简单平移来重新创建这些模式。在TPA的开发过程中进行的研究发现,(i)随着维度的增加,PHIp的分布倾向于降低值;以及(ii)通过TPA获得的拉丁超立方体设计代表了高达中等尺寸的最佳拉丁超立方体的有吸引力的替代方案。得出的结论是,对于多达六个维度(无论点密度如何),所提出的拉丁超立方体设计提供了最优拉丁超立方体的计算上廉价的估计。设计的每一行代表一个运行(或示例)。设计变量被规范化,使得超立方体点的值在0和1之间。
例如:

P=TPLHS(NPOINTS,NDV)
通过NDV矩阵生成NPOINTS,NPOINTS是点数,NDV是变量数。
在这种情况下使用的种子设计是放置在设计空间原点的单个点。P=TPLHS(NPOINTS,NDV,SEED):通过NDV矩阵生成NPOINTS,NPOINTS
是点数,NDV是变量数。SEED是用于构建ELHD的基本拉丁超立方体设计。
1乘NDV SEED不需要归一化。P=TPLHS(NPOINTS,NDV,NTRIALS):通过NDV矩阵生成NPOINTS,
NPOINTS是点数,NDV是变量数。该算法运行NTRIALS次,种子大小从1到
NTRIALS不等。P是根据PHIp准则找到的最佳设计。

PHIp标准是对样本的点在设计空间上的分布程度的度量:
s
PHIp = ( sum J d^(-p) )^(1/p)
i=1
其中p是正整数d是距离值;J是由d分隔的设计中的点对的数量;s是不同距离值的数量。任意点对之间的一般点间距离可以表示如下:

nv
d_ij=(sum|x_ik-x_jk|(t))(1/t)
k=1
其中nv是变量的数量。

PHIP=PHIPfun(X):返回X中给定设计的PHIP值;假设p=50并且t=1。
PHIP=PHIPfun(X,p):返回X中给定的设计的PHIP值,其中p为p,假设t=1。
PHIP=PHIPfun(X,p,t):返回给定值为p和t的X中给定设计的PHIP值。

参考文献:
Viana FAC, Venter G, and Balabanov V, “An algorithm for fast optimal Latinhypercube design of experiments,” International Journal for NumericalMethods in Engineering, Vol. 82 (2), pp. 135-156, 2010
(DOI:10.1002/nme.2750).

二、主程序

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc;
clear all;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%VarMin=[0 0 0];%各个参数下限
VarMax=[10  10 10];%各个参数上限
designspace=[VarMin;VarMax];%各个参数上下限
ndv = size(designspace, 2);%优化变量数量
npoints = 5;%抽样样本数
%% 一、在限定范围抽样
%% 1.LHS
X_LHS= createdoe(npoints,designspace,zeros(1,ndv),'lhc',0);
%% 2.TPLHS
X_TPLHS = SV(TPLHS(npoints, ndv), ...[zeros(1, ndv); ones(1, ndv)], ...designspace);%TPLHS抽样%% 二、在0-1范围抽样%% 1.LHS
iter=10;%迭代次數
X_LHS = LHfun(npoints, ndv,iter);%LHS抽样%% 2.ESEAOLHS
maxiter=50;
maxstalliter=20;
X_ESEAOLHS = ESEAOLHS(npoints, ndv, maxiter, maxstalliter);%ESEAOLHS抽样%% 3.GAOLHS
maxiter=50;
maxstalliter=20;
popsize=10*ndv;
X_GAOLHS = GAOLHS(npoints, ndv, maxiter, maxstalliter, popsize);%GAOLHS抽样

1、在限定范围抽样

(1)LHS

3.56160546861497	4.13444987304314	8.40777901990457
7.56802830455472	7.09267199095473	0.371967723696977
0.876211034143974	9.45225031978424	2.33170416235385
5.49104414252227	0.322064092441767	7.33971145788749
8.69849041404605	3.43078769064378	5.37088724880758

(2)TPLHS

5	0	0
0	7.50	2.50
7.50	10	5
2.50	2.50	7.50
10	5	10

2、在0-1范围抽样

(1)LHS

0	0	0.750000000000000
1	0.250000000000000	0.250000000000000
0.750000000000000	0.750000000000000	0.500000000000000
0.250000000000000	1	1
0.500000000000000	0.500000000000000	0

(2)GAOLHS

0.750000000000000	0.750000000000000	1
1	0.250000000000000	0.500000000000000
0	0.500000000000000	0.750000000000000
0.500000000000000	1	0.250000000000000
0.250000000000000	0	0

(3)ESEAOLHS

0.500000000000000	0.750000000000000	0
1	0.500000000000000	0.750000000000000
0	0.250000000000000	0.500000000000000
0.250000000000000	1	1
0.750000000000000	0	0.250000000000000

三、代码获取

1.阅读首页置顶文章
2.关注CSDN
3.根据自动回复消息,回复“100期”以及相应指令,即可获取对应下载方式。

这篇关于【MATLAB第100期】基于MATLAB的多种改进拉丁超立方LHS数据抽样方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/796007

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操