【MATLAB第100期】基于MATLAB的多种改进拉丁超立方LHS数据抽样方法

2024-03-11 00:20

本文主要是介绍【MATLAB第100期】基于MATLAB的多种改进拉丁超立方LHS数据抽样方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【MATLAB第100期】基于MATLAB的多种改进拉丁超立方LHS数据抽样方法

在这里插入图片描述

一、LHS种类

1、LHS

使用随机搜索生成拉丁超立方体样本。LHS函数特别适用于非常大的设计,当本机MATLAB函数内存不足时。这可能取决于MATLAB版本和所用机器的配置。当尝试运行“lhsdesign”但未成功时,此功能最有用。设计的每一行代表一个点(或样本)。设计变量被规范化,使得超立方体点的值在0和1之间。它使用最大帧间距离算法进行迭代。

2、OLHS

OLHS生成优化的拉丁超立方体样本。它使用Jin等人(2005)提出的增强随机进化算法(ESEA)或Bates等人(2004)提出的遗传算法(GA)来解决优化问题。设计的每一行代表一个运行(或示例)。设计变量被规范化,使得超立方体点的值在0和1之间。

在ESEA和GA策略中,由于用于解决优化问题的启发式优化技术的随机性,所获得的实验设计可能会从一次运行更改为另一次运行。

参考文献:
Jin R, Chen W and Sudjianto A, “An efficient algorithm for constructing optimal design of computer experiments,” Journal of Statistical Planning
and Inference, Vol. 134, pp 268 287, 2005.

Bates SJ, Sienz J, and Toropov VV, “Formulation of the optimal Latin
hypercube design of experiments using a permutation genetic algorithm,”
45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, CA, 19 22 April 2004. AIAA-2004-2011.

3、TPLHS

LHS=TPLHS(nPoints,nDV,seed)
TPLHS通过使用平移传播算法(TPA)生成拉丁超立方体设计。目标是在不使用形式优化的情况下获得最优(或接近最优)拉丁超立方体设计。该过程需要最少的计算工作量,并且结果实际上是实时提供的。该算法利用点位置模式,基于PHIp准则(最大距离准则的变体)进行最优拉丁超立方体设计。由一个或多个点组成的小构建块(称为SEED)用于通过在超空间中的简单平移来重新创建这些模式。在TPA的开发过程中进行的研究发现,(i)随着维度的增加,PHIp的分布倾向于降低值;以及(ii)通过TPA获得的拉丁超立方体设计代表了高达中等尺寸的最佳拉丁超立方体的有吸引力的替代方案。得出的结论是,对于多达六个维度(无论点密度如何),所提出的拉丁超立方体设计提供了最优拉丁超立方体的计算上廉价的估计。设计的每一行代表一个运行(或示例)。设计变量被规范化,使得超立方体点的值在0和1之间。
例如:

P=TPLHS(NPOINTS,NDV)
通过NDV矩阵生成NPOINTS,NPOINTS是点数,NDV是变量数。
在这种情况下使用的种子设计是放置在设计空间原点的单个点。P=TPLHS(NPOINTS,NDV,SEED):通过NDV矩阵生成NPOINTS,NPOINTS
是点数,NDV是变量数。SEED是用于构建ELHD的基本拉丁超立方体设计。
1乘NDV SEED不需要归一化。P=TPLHS(NPOINTS,NDV,NTRIALS):通过NDV矩阵生成NPOINTS,
NPOINTS是点数,NDV是变量数。该算法运行NTRIALS次,种子大小从1到
NTRIALS不等。P是根据PHIp准则找到的最佳设计。

PHIp标准是对样本的点在设计空间上的分布程度的度量:
s
PHIp = ( sum J d^(-p) )^(1/p)
i=1
其中p是正整数d是距离值;J是由d分隔的设计中的点对的数量;s是不同距离值的数量。任意点对之间的一般点间距离可以表示如下:

nv
d_ij=(sum|x_ik-x_jk|(t))(1/t)
k=1
其中nv是变量的数量。

PHIP=PHIPfun(X):返回X中给定设计的PHIP值;假设p=50并且t=1。
PHIP=PHIPfun(X,p):返回X中给定的设计的PHIP值,其中p为p,假设t=1。
PHIP=PHIPfun(X,p,t):返回给定值为p和t的X中给定设计的PHIP值。

参考文献:
Viana FAC, Venter G, and Balabanov V, “An algorithm for fast optimal Latinhypercube design of experiments,” International Journal for NumericalMethods in Engineering, Vol. 82 (2), pp. 135-156, 2010
(DOI:10.1002/nme.2750).

二、主程序

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc;
clear all;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%VarMin=[0 0 0];%各个参数下限
VarMax=[10  10 10];%各个参数上限
designspace=[VarMin;VarMax];%各个参数上下限
ndv = size(designspace, 2);%优化变量数量
npoints = 5;%抽样样本数
%% 一、在限定范围抽样
%% 1.LHS
X_LHS= createdoe(npoints,designspace,zeros(1,ndv),'lhc',0);
%% 2.TPLHS
X_TPLHS = SV(TPLHS(npoints, ndv), ...[zeros(1, ndv); ones(1, ndv)], ...designspace);%TPLHS抽样%% 二、在0-1范围抽样%% 1.LHS
iter=10;%迭代次數
X_LHS = LHfun(npoints, ndv,iter);%LHS抽样%% 2.ESEAOLHS
maxiter=50;
maxstalliter=20;
X_ESEAOLHS = ESEAOLHS(npoints, ndv, maxiter, maxstalliter);%ESEAOLHS抽样%% 3.GAOLHS
maxiter=50;
maxstalliter=20;
popsize=10*ndv;
X_GAOLHS = GAOLHS(npoints, ndv, maxiter, maxstalliter, popsize);%GAOLHS抽样

1、在限定范围抽样

(1)LHS

3.56160546861497	4.13444987304314	8.40777901990457
7.56802830455472	7.09267199095473	0.371967723696977
0.876211034143974	9.45225031978424	2.33170416235385
5.49104414252227	0.322064092441767	7.33971145788749
8.69849041404605	3.43078769064378	5.37088724880758

(2)TPLHS

5	0	0
0	7.50	2.50
7.50	10	5
2.50	2.50	7.50
10	5	10

2、在0-1范围抽样

(1)LHS

0	0	0.750000000000000
1	0.250000000000000	0.250000000000000
0.750000000000000	0.750000000000000	0.500000000000000
0.250000000000000	1	1
0.500000000000000	0.500000000000000	0

(2)GAOLHS

0.750000000000000	0.750000000000000	1
1	0.250000000000000	0.500000000000000
0	0.500000000000000	0.750000000000000
0.500000000000000	1	0.250000000000000
0.250000000000000	0	0

(3)ESEAOLHS

0.500000000000000	0.750000000000000	0
1	0.500000000000000	0.750000000000000
0	0.250000000000000	0.500000000000000
0.250000000000000	1	1
0.750000000000000	0	0.250000000000000

三、代码获取

1.阅读首页置顶文章
2.关注CSDN
3.根据自动回复消息,回复“100期”以及相应指令,即可获取对应下载方式。

这篇关于【MATLAB第100期】基于MATLAB的多种改进拉丁超立方LHS数据抽样方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/796007

相关文章

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr