本文主要是介绍week6 常见数据规划-Santa服务调度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
规划问题
常见规划问题
线性规划是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。
- LP:Linear Programming 线性规划
-
研究线性约束条件下线性目标函数的极值问题
- ILP:Integer Linear Programming 整数线性规划
-
全部决策变量必须为整数
- MIP:Mixed Integer Programming 混合整数规划
-
混合整数规划是LP的一种,其中部分的决策变量是整数(不要求全部都是整数)
- VRP:Vehicle Routing Problem 车辆路径问题
规划求解步骤
- Step1,列出约束条件及目标函数
- Step2,画出约束条件所表示的可行域
- Step3,在可行域内求目标函数的最优解及最优值
规划工具
- pulp
-
只用于线性模型,包括如整数规划、01规划,还是混合整数线性规划 MILP
- ortools
-
开源软件。可以解决车辆路径、流程、整数和线性规划等问题。提供了C++,Python,Java,.NET接口
pulp
- LpProblem类,用来构造LP问题实例
# Name,指定问题名,输出信息用
# Sense,LpMinimize或LpMaximize,代表目标是极大值还是极小值
lpp = LpProblem(name='NoName', sense=LpMinimize)
# 在对LpProblem添加完约束条件后,调用solve进行求解
lpp.solve()
# 在对LpProblem添加完约束条件后,调用solve进行求解
lpSum(vector)
- LpVariable类 ,用来构造LP问题中的变量
# name指定变量名
# lowBound(默认负无穷)和upBound(默认正无穷)是下界和上界,
# cat用来指定变量是离散(Integer,Binary)还是连续(Continuous) LpVariable(name, lowBound=None, upBound=None, cat='Continuous', e=None)
Ortools
线性规划,默认使用GLOP
整数规划,默认使用CBC(Coin-or branch and cut),还包括SCIP、GLPK、Gurobi等
执行流程
# 1. Solver创建
solver = pywraplp.Solver.CreateSolver('SCIP')
# 2. 变量设置
solver.NumVar:创建普通变量
solver.IntVar:创建整数变量infinity = solver.infinity() # 正无穷
x = solver.IntVar(0.0, infinity, 'x')
print('变量数量:', solver.NumVariables())# 3. 添加约束条件
solver.Add(x + 7 * y <= 17.5)
print('约束的数量:', solver.NumConstraints())
# 4. Solve求解
# 求解最大值问题
solver.Maximize(x + 10 * y)
status = solver.Solve()
# 5. Solve的结果
print('目标值 =', solver.Objective().Value())
print('x =', x.solution_value())
print('y =', y.solution_value())
实例操作:Santa服务调度
- Step1, 数据加载
data = pd.read_csv('./data/family_data.csv',index_col='family_id')
- Step2,数据预处理
- 1)计算Perference Cost矩阵 pcost_mat
- 2)计算Accounting Cost矩阵 acost_mat
- 3)计算每个家庭的人数 FAMILY_SIZE
- 4)每个家庭的倾向选择(choice_) DESIRED
N_DAYS = 100 # 安排的天数
N_FAMILY = 5000 #家庭ID的个数
MIN_OCCUPANCY = 125 # 最小承载量
MAX_OCCUPANCY = 300 # 最大承载量
# 计算pcost_mat,每个家庭在什么时候(day0-99)访问时的penalty
# 大小5000*100的矩阵# 1. 计算Perference Cost矩阵 pcost_mat
pcost_mat = np.full(shape=(N_FAMILY,100),fill_value=999999)
for f in range(N_FAMILY):# 家庭成员数f_num = data.loc[f,'n_people']# 对于第f个家庭,初始化pcost = other choice下的penaltypcost_mat[f,:] = get_penalty(f_num,10) #初始值最大惩罚# 计算choice 0-9 的penaltyfor choice in range(10):# choice 0-9temp = data.loc[f][choice] #choice的天数penalty = get_penalty(f_num,choice) # 得到对应choice的惩罚pcost_mat[f,temp-1] = penalty # 因为下标是从0开始,所以要在天数基础上-1才是下标值# 2.计算Accounting Cost矩阵 acost_mat
acost_mat = np.zeros(shape=(MAX_OCCUPANCY+1,MAX_OCCUPANCY+1),dtype=np.float64)
for i in range(acost_mat.shape[0]):# 当天安排的人数for j in range(acost_mat.shape[1]):# 前一天安排的人数diff = abs(i-j)acost_mat[i,j] = max(0,(i - 125) / 400 * i ** (0.5 + diff/50.0))# 3.计算每个家庭的人数 FAMILY_SIZE
FAMILY_SIZE = data['n_people'].values# 4.每个家庭的倾向选择(choice_) DESIRED
DESIRED = data.values[:,:-1]-1
- Step3,使用LP和MIP求解 规划方案
- 1)先使用LP 对绝大部分家庭进行规划
- 2)再使用MIP 对剩余家庭进行规划
- 3)汇总两边的结果 => 最终规划方案
#进行 使用整数规划求解
def solveIP(families,min_occupancy,max_occupancy):# 创建求解器solver = pywraplp.Solver('AssignmentProblem', pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)# 需要安排的家庭n_families = len(families)x = {} # family_id在第j天是否参观candidates = [[] for x in range(N_DAYS)] # 定义了len为100的listfor i in families:#family_idfor j in DESIRED[i,:]:# family_id的choice#print(j)candidates[j].append(i) # 在第j天,有第i个family参观x[i,j] = solver.BoolVar('x[%i,%i]' %(i,j)) # x[%i,%i]中的i代表integer类型daily_occupancy = [solver.Sum([x[i,j] * FAMILY_SIZE[i] for i in candidates[j]])\for j in range(N_DAYS)] # j代表1-100天family_presence = [solver.Sum(x[i,j] for j in DESIRED[i,:])\for i in families]preference_cost = solver.Sum([pcost_mat[i,j] * x[i,j] for i in families\for j in DESIRED[i,:]])# 满足preference_cost最小solver.Minimize(preference_cost) # 每个家庭都在10个choice中出现一次for i in range(n_families):solver.Add(family_presence[i]==1)# 每天访问人数约束for j in range(N_DAYS):solver.Add(daily_occupancy[j]>=min_occupancy[j])solver.Add(daily_occupancy[j]<=max_occupancy[j])result = solver.Solve()temp = [(i,j) for i in families\for j in DESIRED[i,:] if x[i,j].solution_value()>0]# 计算剩余家庭的安排df = pd.DataFrame(temp,columns=['family_id','day'])return df
- Step4, 结果评估
按照evaluation标准,计算
Score = preference cost + accounting penalty
def cost_function(prediction):penalty,daily_occupancy = pcost(prediction) #统计preference cost和每天承载数量accounting_cost,num_out_of_range = acost(daily_occupancy) # 根据每天承载数量计算accounting costfinal_score = penalty + accounting_cost + num_out_of_range * 9999999return final_score
- Step5,方案优化
通过更换family_id的选择,查找更好的score
每次更换后,都对方案进行评估,选择更小的score方案
# 寻找更好的替代方案
def find_better(pred):fobs = np.argsort(FAMILY_SIZE) # 返回数组从小到大的索引#print(np.sort(FAMILY_SIZE)) # 对FAMILY_SIZE按从小到大的顺序排序score = cost_function(pred)original_score = np.inf #打擂法 正无穷初始值# 如果找不到更新则退出while score < original_score:original_score = scorefor family_id in fobs:for pick in range(10):# 得到family_id在choice pick的日期dayday = DESIRED[family_id, pick]# 该family的原有日期oldvalueoldvalue = pred[family_id]# 将原有oldvalue替换为现在的choice pickpred[family_id] = day# 重新计算分数new_score = cost_function(pred)# 如果比原来分数小,更新choice成功if new_score < score:score = new_scoreelse:# 设置为原来的oldvaluepred[family_id] = oldvalueprint(score,end='\r')print(score)
这篇关于week6 常见数据规划-Santa服务调度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!