【关于时间序列的ML】项目 1 :使用 Python 进行 Covid-19 病例 预测

2024-03-10 22:30

本文主要是介绍【关于时间序列的ML】项目 1 :使用 Python 进行 Covid-19 病例 预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎

📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃

🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​

📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】  深度学习【DL】

​​

 🖍foreword

✔说明⇢本人讲解主要包括Python、机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等内容。

如果你对这个系列感兴趣的话,可以关注订阅哟👋

文章目录

使用 Python 进行 Covid-19 病例预测的机器学习项目

数据准备

数据可视化

使用 Python 预测未来 30 天的 Covid-19 病例


在本文中,我将向您介绍一个在接下来的 30 天内使用 Python 预测 Covid-19 病例的机器学习项目。这些类型的预测模型有助于准确预测流行病,这对于获取有关传染病可能传播和后果的信息至关重要。

政府和其他立法机构依靠这些机器学习预测模型和想法来提出新政策并评估应用政策的有效性。

使用 Python 进行 Covid-19 病例预测的机器学习项目

在接下来的 30 天内,我将通过导入必要的 Python 库和数据集来开始使用 Python 进行 Covid-19 病例预测的任务:

数据集1:

Kaggle: Your Home for Data Science

数据集2:

Kaggle: Your Home for Data Science

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as pxfrom fbprophet import Prophet
from sklearn.metrics import r2_scoreplt.style.use("ggplot")df0 = pd.read_csv("CONVENIENT_global_confirmed_cases.csv")
df1 = pd.read_csv("CONVENIENT_global_deaths.csv")

数据准备

现在下一步是数据准备,我将通过组合上述数据集来简单地准备新数据,然后我们将可视化数据的地理图以查看我们将要使用的内容:

world = pd.DataFrame({"Country":[],"Cases":[]})
world["Country"] = df0.iloc[:,1:].columns
cases = []
for i in world["Country"]:cases.append(pd.to_numeric(df0[i][1:]).sum())
world["Cases"]=casescountry_list=list(world["Country"].values)
idx = 0
for i in country_list:sayac = 0for j in i:if j==".":i = i[:sayac]country_list[idx]=ielif j=="(":i = i[:sayac-1]country_list[idx]=ielse:sayac += 1idx += 1
world["Country"]=country_list
world = world.groupby("Country")["Cases"].sum().reset_index()
world.head()
continent=pd.read_csv("continents2.csv")
continent["name"]=continent["name"].str.upper()
CountryCases
0Afghanistan45716.0
1Albania35600.0
2Algeria79110.0
3Andorra6534.0
4Angola14920.0

数据可视化

现在在这里我将准备三个可视化。一个将是地理可视化,以可视化 Covid-19 的全球传播。那么下一个可视化将是查看世界上每天发生的 Covid-19 病例。然后最后一个可视化将是查看世界上每天 Covid-19 的死亡病例。

现在让我们通过查看 Covid-19 的全球传播情况来开始数据可视化:

world["Cases Range"]=pd.cut(world["Cases"],[-150000,50000,200000,800000,1500000,15000000],labels=["U50K","50Kto200K","200Kto800K","800Kto1.5M","1.5M+"])
alpha =[]
for i in world["Country"].str.upper().values:if i == "BRUNEI":i="BRUNEI DARUSSALAM"elif  i=="US":i="UNITED STATES" if len(continent[continent["name"]==i]["alpha-3"].values)==0:alpha.append(np.nan)else:alpha.append(continent[continent["name"]==i]["alpha-3"].values[0])
world["Alpha3"]=alphafig = px.choropleth(world.dropna(),locations="Alpha3",color="Cases Range",projection="mercator",color_discrete_sequence=["white","khaki","yellow","orange","red"])
fig.update_geos(fitbounds="locations", visible=False)
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
fig.show()

 现在让我们看看世界各地的日常案例:

count = []
for i in range(1,len(df0)):count.append(sum(pd.to_numeric(df0.iloc[i,1:].values)))df = pd.DataFrame()
df["Date"] = df0["Country/Region"][1:]
df["Cases"] = count
df=df.set_index("Date")count = []
for i in range(1,len(df1)):count.append(sum(pd.to_numeric(df1.iloc[i,1:].values)))df["Deaths"] = countdf.Cases.plot(title="Daily Covid19 Cases in World",marker=".",figsize=(10,5),label="daily cases")
df.Cases.rolling(window=5).mean().plot(figsize=(10,5),label="MA5")
plt.ylabel("Cases")
plt.legend()
plt.show()

 

 现在让我们来看看 Covid-19 的每日死亡病例:

df.Deaths.plot(title="Daily Covid19 Deaths in World",marker=".",figsize=(10,5),label="daily deaths")
df.Deaths.rolling(window=5).mean().plot(figsize=(10,5),label="MA5")
plt.ylabel("Deaths")
plt.legend()
plt.show()

 

使用 Python 预测未来 30 天的 Covid-19 病例

现在,我将使用 Facebook 先知模型在接下来的 30 天内使用 Python 进行 Covid-19 病例预测任务。Facebook 先知模型使用时间序列方法进行预测。 

让我们看看我们如何在接下来的 30 天内使用 Facebook 先知模型通过 Python 进行 Covid-19 病例预测:

class Fbprophet(object):def fit(self,data):self.data  = dataself.model = Prophet(weekly_seasonality=True,daily_seasonality=False,yearly_seasonality=False)self.model.fit(self.data)def forecast(self,periods,freq):self.future = self.model.make_future_dataframe(periods=periods,freq=freq)self.df_forecast = self.model.predict(self.future)def plot(self,xlabel="Years",ylabel="Values"):self.model.plot(self.df_forecast,xlabel=xlabel,ylabel=ylabel,figsize=(9,4))self.model.plot_components(self.df_forecast,figsize=(9,6))def R2(self):return r2_score(self.data.y, self.df_forecast.yhat[:len(df)])df_fb  = pd.DataFrame({"ds":[],"y":[]})
df_fb["ds"] = pd.to_datetime(df.index)
df_fb["y"]  = df.iloc[:,0].valuesmodel = Fbprophet()
model.fit(df_fb)
model.forecast(30,"D")
model.R2()forecast = model.df_forecast[["ds","yhat_lower","yhat_upper","yhat"]].tail(30).reset_index().set_index("ds").drop("index",axis=1)
forecast["yhat"].plot(marker=".",figsize=(10,5))
plt.fill_between(x=forecast.index, y1=forecast["yhat_lower"], y2=forecast["yhat_upper"],color="gray")
plt.legend(["forecast","Bound"],loc="upper left")
plt.title("Forecasting of Next 30 Days Cases")
plt.show()

 

我希望您喜欢这篇关于使用 Python 编程语言预测未来 30 天 Covid-19 病例的文章。请随时在下面的评论部分提出您宝贵的问题。

这篇关于【关于时间序列的ML】项目 1 :使用 Python 进行 Covid-19 病例 预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/795719

相关文章

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

python 3.8 的anaconda下载方法

《python3.8的anaconda下载方法》本文详细介绍了如何下载和安装带有Python3.8的Anaconda发行版,包括Anaconda简介、下载步骤、安装指南以及验证安装结果,此外,还介... 目录python3.8 版本的 Anaconda 下载与安装指南一、Anaconda 简介二、下载 An

如何使用CSS3实现波浪式图片墙

《如何使用CSS3实现波浪式图片墙》:本文主要介绍了如何使用CSS3的transform属性和动画技巧实现波浪式图片墙,通过设置图片的垂直偏移量,并使用动画使其周期性地改变位置,可以创建出动态且具有波浪效果的图片墙,同时,还强调了响应式设计的重要性,以确保图片墙在不同设备上都能良好显示,详细内容请阅读本文,希望能对你有所帮助...

Python自动化处理手机验证码

《Python自动化处理手机验证码》手机验证码是一种常见的身份验证手段,广泛应用于用户注册、登录、交易确认等场景,下面我们来看看如何使用Python自动化处理手机验证码吧... 目录一、获取手机验证码1.1 通过短信接收验证码1.2 使用第三方短信接收服务1.3 使用ADB读取手机短信1.4 通过API获取

Rust中的注释使用解读

《Rust中的注释使用解读》本文介绍了Rust中的行注释、块注释和文档注释的使用方法,通过示例展示了如何在实际代码中应用这些注释,以提高代码的可读性和可维护性... 目录Rust 中的注释使用指南1. 行注释示例:行注释2. 块注释示例:块注释3. 文档注释示例:文档注释4. 综合示例总结Rust 中的注释

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi

Python中多线程和多进程的基本用法详解

《Python中多线程和多进程的基本用法详解》这篇文章介绍了Python中多线程和多进程的相关知识,包括并发编程的优势,多线程和多进程的概念、适用场景、示例代码,线程池和进程池的使用,以及如何选择合适... 目录引言一、并发编程的主要优势二、python的多线程(Threading)1. 什么是多线程?2.

Linux使用cut进行文本提取的操作方法

《Linux使用cut进行文本提取的操作方法》Linux中的cut命令是一个命令行实用程序,用于从文件或标准输入中提取文本行的部分,本文给大家介绍了Linux使用cut进行文本提取的操作方法,文中有详... 目录简介基础语法常用选项范围选择示例用法-f:字段选择-d:分隔符-c:字符选择-b:字节选择--c

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图