【关于时间序列的ML】项目 1 :使用 Python 进行 Covid-19 病例 预测

2024-03-10 22:30

本文主要是介绍【关于时间序列的ML】项目 1 :使用 Python 进行 Covid-19 病例 预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎

📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃

🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​

📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】  深度学习【DL】

​​

 🖍foreword

✔说明⇢本人讲解主要包括Python、机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等内容。

如果你对这个系列感兴趣的话,可以关注订阅哟👋

文章目录

使用 Python 进行 Covid-19 病例预测的机器学习项目

数据准备

数据可视化

使用 Python 预测未来 30 天的 Covid-19 病例


在本文中,我将向您介绍一个在接下来的 30 天内使用 Python 预测 Covid-19 病例的机器学习项目。这些类型的预测模型有助于准确预测流行病,这对于获取有关传染病可能传播和后果的信息至关重要。

政府和其他立法机构依靠这些机器学习预测模型和想法来提出新政策并评估应用政策的有效性。

使用 Python 进行 Covid-19 病例预测的机器学习项目

在接下来的 30 天内,我将通过导入必要的 Python 库和数据集来开始使用 Python 进行 Covid-19 病例预测的任务:

数据集1:

Kaggle: Your Home for Data Science

数据集2:

Kaggle: Your Home for Data Science

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as pxfrom fbprophet import Prophet
from sklearn.metrics import r2_scoreplt.style.use("ggplot")df0 = pd.read_csv("CONVENIENT_global_confirmed_cases.csv")
df1 = pd.read_csv("CONVENIENT_global_deaths.csv")

数据准备

现在下一步是数据准备,我将通过组合上述数据集来简单地准备新数据,然后我们将可视化数据的地理图以查看我们将要使用的内容:

world = pd.DataFrame({"Country":[],"Cases":[]})
world["Country"] = df0.iloc[:,1:].columns
cases = []
for i in world["Country"]:cases.append(pd.to_numeric(df0[i][1:]).sum())
world["Cases"]=casescountry_list=list(world["Country"].values)
idx = 0
for i in country_list:sayac = 0for j in i:if j==".":i = i[:sayac]country_list[idx]=ielif j=="(":i = i[:sayac-1]country_list[idx]=ielse:sayac += 1idx += 1
world["Country"]=country_list
world = world.groupby("Country")["Cases"].sum().reset_index()
world.head()
continent=pd.read_csv("continents2.csv")
continent["name"]=continent["name"].str.upper()
CountryCases
0Afghanistan45716.0
1Albania35600.0
2Algeria79110.0
3Andorra6534.0
4Angola14920.0

数据可视化

现在在这里我将准备三个可视化。一个将是地理可视化,以可视化 Covid-19 的全球传播。那么下一个可视化将是查看世界上每天发生的 Covid-19 病例。然后最后一个可视化将是查看世界上每天 Covid-19 的死亡病例。

现在让我们通过查看 Covid-19 的全球传播情况来开始数据可视化:

world["Cases Range"]=pd.cut(world["Cases"],[-150000,50000,200000,800000,1500000,15000000],labels=["U50K","50Kto200K","200Kto800K","800Kto1.5M","1.5M+"])
alpha =[]
for i in world["Country"].str.upper().values:if i == "BRUNEI":i="BRUNEI DARUSSALAM"elif  i=="US":i="UNITED STATES" if len(continent[continent["name"]==i]["alpha-3"].values)==0:alpha.append(np.nan)else:alpha.append(continent[continent["name"]==i]["alpha-3"].values[0])
world["Alpha3"]=alphafig = px.choropleth(world.dropna(),locations="Alpha3",color="Cases Range",projection="mercator",color_discrete_sequence=["white","khaki","yellow","orange","red"])
fig.update_geos(fitbounds="locations", visible=False)
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
fig.show()

 现在让我们看看世界各地的日常案例:

count = []
for i in range(1,len(df0)):count.append(sum(pd.to_numeric(df0.iloc[i,1:].values)))df = pd.DataFrame()
df["Date"] = df0["Country/Region"][1:]
df["Cases"] = count
df=df.set_index("Date")count = []
for i in range(1,len(df1)):count.append(sum(pd.to_numeric(df1.iloc[i,1:].values)))df["Deaths"] = countdf.Cases.plot(title="Daily Covid19 Cases in World",marker=".",figsize=(10,5),label="daily cases")
df.Cases.rolling(window=5).mean().plot(figsize=(10,5),label="MA5")
plt.ylabel("Cases")
plt.legend()
plt.show()

 

 现在让我们来看看 Covid-19 的每日死亡病例:

df.Deaths.plot(title="Daily Covid19 Deaths in World",marker=".",figsize=(10,5),label="daily deaths")
df.Deaths.rolling(window=5).mean().plot(figsize=(10,5),label="MA5")
plt.ylabel("Deaths")
plt.legend()
plt.show()

 

使用 Python 预测未来 30 天的 Covid-19 病例

现在,我将使用 Facebook 先知模型在接下来的 30 天内使用 Python 进行 Covid-19 病例预测任务。Facebook 先知模型使用时间序列方法进行预测。 

让我们看看我们如何在接下来的 30 天内使用 Facebook 先知模型通过 Python 进行 Covid-19 病例预测:

class Fbprophet(object):def fit(self,data):self.data  = dataself.model = Prophet(weekly_seasonality=True,daily_seasonality=False,yearly_seasonality=False)self.model.fit(self.data)def forecast(self,periods,freq):self.future = self.model.make_future_dataframe(periods=periods,freq=freq)self.df_forecast = self.model.predict(self.future)def plot(self,xlabel="Years",ylabel="Values"):self.model.plot(self.df_forecast,xlabel=xlabel,ylabel=ylabel,figsize=(9,4))self.model.plot_components(self.df_forecast,figsize=(9,6))def R2(self):return r2_score(self.data.y, self.df_forecast.yhat[:len(df)])df_fb  = pd.DataFrame({"ds":[],"y":[]})
df_fb["ds"] = pd.to_datetime(df.index)
df_fb["y"]  = df.iloc[:,0].valuesmodel = Fbprophet()
model.fit(df_fb)
model.forecast(30,"D")
model.R2()forecast = model.df_forecast[["ds","yhat_lower","yhat_upper","yhat"]].tail(30).reset_index().set_index("ds").drop("index",axis=1)
forecast["yhat"].plot(marker=".",figsize=(10,5))
plt.fill_between(x=forecast.index, y1=forecast["yhat_lower"], y2=forecast["yhat_upper"],color="gray")
plt.legend(["forecast","Bound"],loc="upper left")
plt.title("Forecasting of Next 30 Days Cases")
plt.show()

 

我希望您喜欢这篇关于使用 Python 编程语言预测未来 30 天 Covid-19 病例的文章。请随时在下面的评论部分提出您宝贵的问题。

这篇关于【关于时间序列的ML】项目 1 :使用 Python 进行 Covid-19 病例 预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/795719

相关文章

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@