【学习】pytorch框架的数据管理—— 理解Dataloader

2024-03-10 22:20

本文主要是介绍【学习】pytorch框架的数据管理—— 理解Dataloader,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考:https://spite-triangle.github.io/artificial_intelligence/#/./README

1.标准数据集

使用:以 CIFAR10 数据集为例,其他数据集类似。

# root:数据存放路径
# train:区分训练集,还是测试集
# transform:对数据集中的图进行预处理
# target_transfrom:对期望输出进行预处理
# download:从网上直接下载数据集
torchvision.datasets.CIFAR10(root: str, train: bool=True, transform=None, target_transform=None, download=False)

2. 自定义数据集

常用的文件路径操作:

rootPath = '..\\asset'
path = '..\\asset\\cat.jpeg'
# 测试路径
os.path.exists(rootPath)
# 文件类型判断
os.path.isfile(path)
os.path.islink(path)
os.path.isdir(path)
# 获取绝对路径 
os.path.abspath(rootPath)
# 罗列出文件夹下的所有文件名
os.listdir(rootPath)
# 路径拼接
os.path.join(rootPath,'cat.jpeg')

数据集:

 class ImgaeAssets(torch.utils.data.Dataset):""" 自定义数据集类 """def __init__(self,path):self.root = pathself.files = os.listdir(path)passdef __getitem__(self,id):""" 用于数据集中的样本获取 """filePath = os.path.join(self.root,self.files[id])img = Image.open(filePath)return imgdef __len__(self):""" 数据的数量 """return len(self.files)# 创建数据集assets = ImgaeAssets('../asset')# 获取数据img = assets[0]img.show()

##重点 Dataloader

  • 作用: 控制数据集 dataSets 的获取

在这里插入图片描述
用 dataloader 将 dataset 中的数据取出打包成 batch 的过程中,会通过 sampler 从 dataset 中取出 batch_size 个样本,然后通过 collect function 将取出的样本整理并打包成最终的 batch。

sampler 获取从 dataset 中获取样本,首先通过 len 获取总样本数,然后根据总样本数生成索引序列(数组的索引号),最后根据索引号通过 getitem 加载真正的样本数据(dataset 只预先加载了数据的文件路径,真正的文件并没直接加载)。

通过 sampler 获取到的数据样本,其实是一个「tuple(tensor) 类型数组」,并非真正的一个 tensor。将 tensor 数组最终整合成一个 tensor 就需要通过 dataset 的 collect function 实现。

# dataset:设置数据集
# batch_size:一个 batch 包含多少样本
# shuffle:下一次 epoch 是否需要将数据打乱,再划分 batch
# drop_last:当最后一个 batch 不具有 batch_size 个样本时,是否需要舍弃
# num_workers:线程数
# collate_fn:自定义 collate_fn
# sampler:自定义采集
torch.utils.data.DataLoader(dataset,batch_size,shuffle=False,drop_last=False,num_workers=0,worker_init_fn,collate_fn,sampler)

这篇关于【学习】pytorch框架的数据管理—— 理解Dataloader的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/795701

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识