概率论与数理统计 P6 条件概率

2024-03-10 15:44

本文主要是介绍概率论与数理统计 P6 条件概率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • P6 条件概率
    • 一.条件概率
    • 二.乘法定理
    • 三.全概率公式 & 贝叶斯公式
      • 3.1 全概率公式(由因求果)
      • 3.2 贝叶斯公式(由果导因)

P6 条件概率

一.条件概率

1.Def:设A、B是两个事件,且 P ( A ) > 0 P(A)>0 P(A)>0,称
P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\dfrac{P(AB)}{P(A)} P(BA)=P(A)P(AB)
为在事件A发生的条件下事件B发生的条件概率

注意:这里样本空间已经从 S 坍塌到 A 了,样本空间减小。 \color{red}{注意:这里样本空间已经从S坍塌到A了,样本空间减小。} 注意:这里样本空间已经从S坍塌到A了,样本空间减小。

2.条件概率满足条件(也是概率)

已知事件A发生且P(A)>0

  • 非负性:对于每一件事件B,有 P ( B ∣ A ) ⩾ 0 P(B|A)\geqslant0 P(BA)0

  • 规范性:对于必然事件S,有 P ( S ∣ A ) = 1 P(S|A)=1 P(SA)=1

  • 可列可加性:设 B 1 , B 2 , … B_1,B_2,… B1,B2,是两两互不相容事件,则有

P ( ⋃ i = 1 ∞ B i ∣ A ) = ∑ i = 1 ∞ P ( B i ∣ A ) P(\quad\bigcup\limits_{i=1}^∞B_i|A\quad) =\sum\limits_{i=1}^∞P(B_i|A) P(i=1BiA)=i=1P(BiA)

3.条件概率的性质:当P(A)> 0时

  • P ( B ∣ A ) ⩾ 0 P(B|A)\geqslant 0 P(BA)0
  • 有限可加性: P ( ⋃ i = 1 n B i ∣ A ) = ∑ i = 1 n P ( B i ∣ A ) P(\quad\bigcup\limits_{i=1}^nB_i|A\quad) =\sum\limits_{i=1}^nP(B_i|A) P(i=1nBiA)=i=1nP(BiA)
  • P ( S ∣ A ) = 0 , P ( ∅ ∣ A ) = 0 P(S|A)=0,P(∅|A)=0 P(SA)=0,P(∅∣A)=0
  • 加法公式: P ( B ∪ C ∣ A ) = P ( B ∣ A ) + P ( C ∣ A ) − P ( B C ∣ A ) P(B∪C|A)=P(B|A)+P(C|A)-P(BC|A) P(BCA)=P(BA)+P(CA)P(BCA)
  • 当B、C互不相容时, P ( B ∪ C ∣ A ) = P ( B ∣ A ) + P ( C ∣ A ) P(B∪C|A)=P(B|A)+P(C|A) P(BCA)=P(BA)+P(CA)
  • 可减性: P ( B − C ∣ A ) = P ( B ∣ A ) − P ( B C ∣ A ) P(B-C|A)=P(B|A)-P(BC|A) P(BCA)=P(BA)P(BCA)
  • P ( B ˉ ∣ A ) = 1 − P ( B ∣ A ) P(\bar{B}|A)=1-P(B|A) P(BˉA)=1P(BA)

二.乘法定理

1.Def:设P(A)> 0,P(B)> 0 ,则有
P ( A B ) = P ( B ∣ A ) P ( A ) = P ( A ∣ B ) P ( B ) P(AB)=P(B|A)P(A)=P(A|B)P(B) P(AB)=P(BA)P(A)=P(AB)P(B)
称为乘法公式。

2.推广

  • 三个事件A、B、C,且P(AB)> 0[ P ( A ) ⩾ P ( A B ) > 0 P(A)\geqslant P(AB) > 0 P(A)P(AB)>0].

P ( A B C ) = P ( C ∣ A B ) P ( B ∣ A ) P ( A ) P(ABC)=P(C|AB)P(B|A)P(A) P(ABC)=P(CAB)P(BA)P(A)

  • n( n ⩾ 2 n\geqslant2 n2)个事件 A 1 , A 2 , … A n A_1,A_2,…A_n A1,A2,An,且 P ( A 1 A 2 … A n − 1 ) > 0 P(A_1A_2…A_{n-1}) > 0 P(A1A2An1)>0,则有

P ( A 1 A 2 … A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 2 A 1 ) … P ( A n ∣ A n − 1 … A 2 A 1 ) P(A_1A_2…A_n)=P(A_1)P(A_2|A_1)P(A_3|A_2A_1)…P(A_n|A_{n-1}…A_2A_1) P(A1A2An)=P(A1)P(A2A1)P(A3A2A1)P(AnAn1A2A1)

  • 注意事件发生的先后次序, A i A_i Ai先于 A i + 1 A_{i+1} Ai+1​发生,可用上式。

三.全概率公式 & 贝叶斯公式

3.1 全概率公式(由因求果)

1.样本空间划分:设S为试验E的样本空间, B 1 , B 2 , … , B n B_1,B_2,…,B_n B1,B2,,Bn为E的一组事件,若

  • B i B j = B_iB_j= BiBj=∅, i ≠ j , i , j = 1 , 2 , … , n i ≠ j, i,j=1,2,…,n i=j,i,j=1,2,,n
  • B 1 ∪ B 2 ∪ … ∪ B n = S B_1∪B_2∪…∪B_n=S B1B2Bn=S

则称 B 1 , B 2 , … , B n B_1,B_2,…,B_n B1,B2,,Bn为样本空间S的一个划分(也叫完备事件集)。

注意 : \color{red}{注意:} 注意:①若 B 1 , B 2 , … , B n B_1,B_2,…,B_n B1,B2,,Bn为样本空间S的一个划分,则对每次试验,事件 B 1 , B 2 , … , B n B_1,B_2,…,B_n B1,B2,,Bn中必有一个且仅有一个发生。

​ ②样本空间的划分一般不唯一。

2.全概率公式:设试验E的样本空间为S,A为E的事件, B 1 , B 2 , … , B n B_1,B_2,…,B_n B1,B2,,Bn为S的一个划分,且 P ( B i ) > 0 ( i = 1 , 2 , … , n ) P(B_i)>0(i=1,2,…,n) P(Bi)>0(i=1,2,,n),则
P ( A ) = P ( A ∣ B 1 ) P ( B 1 ) + P ( A ∣ B 2 ) P ( B 2 ) + … + P ( A ∣ B n ) P ( B n ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(A)=P(A|B_1)P(B_1)+P(A|B_2)P(B_2)+…+P(A|B_n)P(B_n)=\sum_{i=1}^nP(A|B_i)P(B_i) P(A)=P(AB1)P(B1)+P(AB2)P(B2)++P(ABn)P(Bn)=i=1nP(ABi)P(Bi)

3.2 贝叶斯公式(由果导因)

1.Def:设试验E的样本空间为S。A为E的事件, B 1 , B 2 , … , B n B_1,B_2,…,B_n B1,B2,,Bn为S的一组划分,且P(A)> 0, P ( B i ) > 0 ( i = 1 , 2 , … , n ) P(B_i)>0(i=1,2,…,n) P(Bi)>0(i=1,2,,n),则
P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(B_i|A)=\dfrac{P(A|B_i)P(B_i)}{\sum\limits_{i=1}^n P(A|B_i)P(B_i)} P(BiA)=i=1nP(ABi)P(Bi)P(ABi)P(Bi)
称为贝叶斯公式。

2.全概率 & 贝叶斯

取n=2,并将 B 1 B_1 B1记为 B B B B 2 B_2 B2记为$ \bar{B}$,则全概率公式和贝叶斯公式可以写成:
P ( A ) = P ( A ∣ B ) P ( B ) + P ( A ∣ B ˉ ) P ( B ˉ ) ——全概率公式 P(A)=P(A|B)P(B)+P(A|\bar{B})P(\bar{B})——全概率公式 P(A)=P(AB)P(B)+P(ABˉ)P(Bˉ)——全概率公式

P ( B ∣ A ) = P ( A B ) P ( A ) = P ( A ∣ B ) P ( B ) P ( A ∣ B ) P ( B ) + P ( A ∣ B ˉ ) P ( B ˉ ) ——贝叶斯公式 P(B|A)=\dfrac{P(AB)}{P(A)}=\dfrac{P(A|B)P(B)}{P(A|B)P(B)+P(A|\bar{B})P(\bar{B})}——贝叶斯公式 P(BA)=P(A)P(AB)=P(AB)P(B)+P(ABˉ)P(Bˉ)P(AB)P(B)——贝叶斯公式

这篇关于概率论与数理统计 P6 条件概率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/794722

相关文章

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

Python按条件批量删除TXT文件行工具

《Python按条件批量删除TXT文件行工具》这篇文章主要为大家详细介绍了Python如何实现按条件批量删除TXT文件中行的工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.简介2.运行效果3.相关源码1.简介一个由python编写android的可根据TXT文件按条件批

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

封装MySQL操作时Where条件语句的组织

在对数据库进行封装的过程中,条件语句应该是相对难以处理的,毕竟条件语句太过于多样性。 条件语句大致分为以下几种: 1、单一条件,比如:where id = 1; 2、多个条件,相互间关系统一。比如:where id > 10 and age > 20 and score < 60; 3、多个条件,相互间关系不统一。比如:where (id > 10 OR age > 20) AND sco

使用条件变量实现线程同步:C++实战指南

使用条件变量实现线程同步:C++实战指南 在多线程编程中,线程同步是确保程序正确性和稳定性的关键。条件变量(condition variable)是一种强大的同步原语,用于在线程之间进行协调,避免数据竞争和死锁。本文将详细介绍如何在C++中使用条件变量实现线程同步,并提供完整的代码示例和详细的解释。 什么是条件变量? 条件变量是一种同步机制,允许线程在某个条件满足之前进入等待状态,并在条件满

一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)

1.没有分段的情况 原函数为一元二次凹函数(开口向下),如下: 因为要使得其存在正解,必须满足,那么。 上述函数的最优结果为:,。 对应的mathematica代码如下: Clear["Global`*"]f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)Maximize[{f0[x, a, b,

notepad++ 正则表达式多条件查找替换

基础语法参考: https://www.cnblogs.com/winstonet/p/10635043.html https://www.linuxidc.com/Linux/2019-05/158701.htm   通常情况下我们查找的内容和要被替换掉的内容是一样的,我们只需要使用正则表达式精确框定查找内容,替换直接输入要替换的内容即可。 但有时会比较复杂,查找的内容,只需要替换其中

FPGA开发:条件语句 × 循环语句

条件语句 if_else语句 if_else语句,用来判断是否满足所给定的条件,根据判断的结果(真或假)决定执行给出的两种操作之一。 if(表达式)语句; 例如: if(a>b) out1=int1; if(表达式)         语句1; else         语句2; 例如: if(a>b)out1=int1;elseout1=int2; if(表达式1) 语句1; els

Kernel 中MakeFile 使用if条件编译

有时需要通过if  else来选择编译哪个驱动,单纯的obj-$(CONFIG_)就不是很方便,下面提供两种参考案例: 案例一: 来源:drivers/char/tpm/Makefileifdef CONFIG_ACPItpm-y += tpm_eventlog.o tpm_acpi.oelseifdef CONFIG_TCG_IBMVTPMtpm-y += tpm_eventlog.o

shell循环sleep while例子 条件判断

i=1# 小于5等于时候才执行while [ ${i} -le 5 ]doecho ${i}i=`expr ${i} + 1`# 休眠3秒sleep 3doneecho done 参考 http://c.biancheng.net/cpp/view/2736.html