YOLOv5-Openvino-ByteTrack【CPU】

2024-03-10 03:44
文章标签 cpu yolov5 bytetrack openvino

本文主要是介绍YOLOv5-Openvino-ByteTrack【CPU】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

纯检测如下:
YOLOv5-Openvino和ONNXRuntime推理【CPU】
YOLOv6-Openvino和ONNXRuntime推理【CPU】
YOLOv8-Openvino和ONNXRuntime推理【CPU】
YOLOv9-Openvino和ONNXRuntime推理【CPU】

注:YOLOv5和YOLOv6代码内容基本一致!
全部代码Github:https://github.com/Bigtuo/YOLOv8_Openvino

1 环境:

CPU:i5-12500
Python:3.8.18
VS2019
注:Bytetrack中的lap和cython_bbox库需要编译安装,直接安装报错,故下载VS2019。

2 安装Openvino和ONNXRuntime

2.1 Openvino简介

Openvino是由Intel开发的专门用于优化和部署人工智能推理的半开源的工具包,主要用于对深度推理做优化。

Openvino内部集成了Opencv、TensorFlow模块,除此之外它还具有强大的Plugin开发框架,允许开发者在Openvino之上对推理过程做优化。

Openvino整体框架为:Openvino前端→ Plugin中间层→ Backend后端
Openvino的优点在于它屏蔽了后端接口,提供了统一操作的前端API,开发者可以无需关心后端的实现,例如后端可以是TensorFlow、Keras、ARM-NN,通过Plugin提供给前端接口调用,也就意味着一套代码在Openvino之上可以运行在多个推理引擎之上,Openvino像是类似聚合一样的开发包。

2.2 ONNXRuntime简介

ONNXRuntime是微软推出的一款推理框架,用户可以非常便利的用其运行一个onnx模型。ONNXRuntime支持多种运行后端包括CPU,GPU,TensorRT,DML等。可以说ONNXRuntime是对ONNX模型最原生的支持。

虽然大家用ONNX时更多的是作为一个中间表示,从pytorch转到onnx后直接喂到TensorRT或MNN等各种后端框架,但这并不能否认ONNXRuntime是一款非常优秀的推理框架。而且由于其自身只包含推理功能(最新的ONNXRuntime甚至已经可以训练),通过阅读其源码可以解深度学习框架的一些核心功能原理(op注册,内存管理,运行逻辑等)
总体来看,整个ONNXRuntime的运行可以分为三个阶段,Session构造,模型加载与初始化和运行。和其他所有主流框架相同,ONNXRuntime最常用的语言是python,而实际负责执行框架运行的则是C++。

2.3 安装

pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxruntime -i  https://pypi.tuna.tsinghua.edu.cn/simple

3 YOLOv5和ByteTrack原理

YOLOv5详解
Github:https://github.com/ultralytics/yolov5

ByteTrack官网
ByteTrack算法步骤详解

3.1 安装lap和cython_bbox

1. lap
cd lap-0.4.0
python setup.py install2. cython_bbox【上传的文件可以直接进行第4步】
pip install cython -i https://pypi.tuna.tsinghua.edu.cn/simple【需先安装】
cd cython_bbox-0.1.3
(1)下载cython-bbox
(2)解压文件
(3)【已修改】在解压后的目录中,找到steup.py 文件,把extra_compile_args=[-Wno-cpp’],修改为extra_compile_args = {‘gcc’: [/Qstd=c99’]}
(4)在解压文件目录下运行python setup.py build_ext install

4 YOLOv5+ByteTrack主代码

下面代码整个处理过程主要包括:预处理—>推理—>后处理—>是/否跟踪—>画图。
假设图像resize为640×640,
前处理输出结果维度:(1, 3, 640, 640);
推理输出结果维度:(1, 8400×3, 85),其中85表示4个box坐标信息+置信度分数+80个类别概率,8400×3表示(80×80+40×40+20×20)×3,不同于v8与v9采用类别里面最大的概率作为置信度score;
后处理输出结果维度:(5, 6),其中第一个5表示图bus.jpg检出5个目标,第二个维度6表示(x1, y1, x2, y2, conf, cls);
跟踪输入维度:(-1, 5),其中第二个维度5表示(x1, y1, x2, y2, conf);
跟踪输出维度:(-1, 6),其中第二个维度6表示(x1, y1, x2, y2, conf, ids)。

注:YOLOv6_1.0换模型文件可直接使用!

import argparse
import time 
import cv2
import numpy as np
from openvino.runtime import Core  # pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
import onnxruntime as ort  # 使用onnxruntime推理用上,pip install onnxruntime,默认安装CPUimport copy
from bytetrack.byte_tracker import BYTETracker# COCO默认的80类
CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow','elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee','skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich','orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed','dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven','toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']class OpenvinoInference(object):def __init__(self, onnx_path):self.onnx_path = onnx_pathie = Core()self.model_onnx = ie.read_model(model=self.onnx_path)self.compiled_model_onnx = ie.compile_model(model=self.model_onnx, device_name="CPU")self.output_layer_onnx = self.compiled_model_onnx.output(0)def predict(self, datas):predict_data = self.compiled_model_onnx([datas])[self.output_layer_onnx]return predict_dataclass YOLOv5:"""YOLOv5 object detection model class for handling inference and visualization."""def __init__(self, onnx_model, imgsz=(640, 640), infer_tool='openvino'):"""Initialization.Args:onnx_model (str): Path to the ONNX model."""self.infer_tool = infer_toolif self.infer_tool == 'openvino':# 构建openvino推理引擎self.openvino = OpenvinoInference(onnx_model)self.ndtype = np.singleelse:# 构建onnxruntime推理引擎self.ort_session = ort.InferenceSession(onnx_model,providers=['CUDAExecutionProvider', 'CPUExecutionProvider']if ort.get_device() == 'GPU' else ['CPUExecutionProvider'])# Numpy dtype: support both FP32 and FP16 onnx modelself.ndtype = np.half if self.ort_session.get_inputs()[0].type == 'tensor(float16)' else np.singleself.classes = CLASSES  # 加载模型类别self.model_height, self.model_width = imgsz[0], imgsz[1]  # 图像resize大小self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))  # 为每个类别生成调色板def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45):"""The whole pipeline: pre-process -> inference -> post-process.Args:im0 (Numpy.ndarray): original input image.conf_threshold (float): confidence threshold for filtering predictions.iou_threshold (float): iou threshold for NMS.Returns:boxes (List): list of bounding boxes."""# 前处理Pre-processt1 = time.time()im, ratio, (pad_w, pad_h) = self.preprocess(im0)print('预处理时间:{:.3f}s'.format(time.time() - t1))# 推理 inferencet2 = time.time()if self.infer_tool == 'openvino':preds = self.openvino.predict(im)else:preds = self.ort_session.run(None, {self.ort_session.get_inputs()[0].name: im})[0]print('推理时间:{:.3f}s'.format(time.time() - t2))# 后处理Post-processt3 = time.time()boxes = self.postprocess(preds,im0=im0,ratio=ratio,pad_w=pad_w,pad_h=pad_h,conf_threshold=conf_threshold,iou_threshold=iou_threshold,)print('后处理时间:{:.3f}s'.format(time.time() - t3))return boxes# 前处理,包括:resize, pad, HWC to CHW,BGR to RGB,归一化,增加维度CHW -> BCHWdef preprocess(self, img):"""Pre-processes the input image.Args:img (Numpy.ndarray): image about to be processed.Returns:img_process (Numpy.ndarray): image preprocessed for inference.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox."""# Resize and pad input image using letterbox() (Borrowed from Ultralytics)shape = img.shape[:2]  # original image shapenew_shape = (self.model_height, self.model_width)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])ratio = r, rnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # wh paddingif shape[::-1] != new_unpad:  # resizeimg = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # 填充# Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)img = np.ascontiguousarray(np.einsum('HWC->CHW', img)[::-1], dtype=self.ndtype) / 255.0img_process = img[None] if len(img.shape) == 3 else imgreturn img_process, ratio, (pad_w, pad_h)# 后处理,包括:阈值过滤与NMSdef postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold):"""Post-process the prediction.Args:preds (Numpy.ndarray): predictions come from ort.session.run().im0 (Numpy.ndarray): [h, w, c] original input image.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox.conf_threshold (float): conf threshold.iou_threshold (float): iou threshold.Returns:boxes (List): list of bounding boxes."""# (Batch_size, Num_anchors, xywh_score_conf_cls), v5和v6_1.0的[..., 4]是置信度分数,v8v9采用类别里面最大的概率作为置信度scorex = preds  # outputs: predictions (1, 8400*3, 85)# Predictions filtering by conf-thresholdx = x[x[..., 4] > conf_threshold]# Create a new matrix which merge these(box, score, cls) into one# For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.htmlx = np.c_[x[..., :4], x[..., 4], np.argmax(x[..., 5:], axis=-1)]# NMS filtering# 经过NMS后的值, np.array([[x, y, w, h, conf, cls], ...]), shape=(-1, 4 + 1 + 1)x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]# 重新缩放边界框,为画图做准备if len(x) > 0:# Bounding boxes format change: cxcywh -> xyxyx[..., [0, 1]] -= x[..., [2, 3]] / 2x[..., [2, 3]] += x[..., [0, 1]]# Rescales bounding boxes from model shape(model_height, model_width) to the shape of original imagex[..., :4] -= [pad_w, pad_h, pad_w, pad_h]x[..., :4] /= min(ratio)# Bounding boxes boundary clampx[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])return x[..., :6]  # boxeselse:return []# 绘框def draw_and_visualize(self, im, bboxes, video_writer, vis=False, save=False, is_track=False):"""Draw and visualize results.Args:im (np.ndarray): original image, shape [h, w, c].bboxes (numpy.ndarray): [n, 6], n is number of bboxes.vis (bool): imshow using OpenCV.save (bool): save image annotated.Returns:None"""# Draw rectangles if not is_track:for (*box, conf, cls_) in bboxes:# draw bbox rectanglecv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),self.color_palette[int(cls_)], 1, cv2.LINE_AA)cv2.putText(im, f'{self.classes[int(cls_)]}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),cv2.FONT_HERSHEY_SIMPLEX, 0.7, self.color_palette[int(cls_)], 2, cv2.LINE_AA)else:for (*box, conf, id_) in bboxes:# draw bbox rectanglecv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),(0, 0, 255), 1, cv2.LINE_AA)cv2.putText(im, f'{id_}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv2.LINE_AA)# Show imageif vis:cv2.imshow('demo', im)cv2.waitKey(1)# Save videoif save:video_writer.write(im)class ByteTrackerONNX(object):def __init__(self, args):self.args = argsself.tracker = BYTETracker(args, frame_rate=30)def _tracker_update(self, dets, image):online_targets = []if dets is not None:online_targets = self.tracker.update(dets[:, :-1],[image.shape[0], image.shape[1]],[image.shape[0], image.shape[1]],)online_tlwhs = []online_ids = []online_scores = []for online_target in online_targets:tlwh = online_target.tlwhtrack_id = online_target.track_idvertical = tlwh[2] / tlwh[3] > 1.6if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical:online_tlwhs.append(tlwh)online_ids.append(track_id)online_scores.append(online_target.score)return online_tlwhs, online_ids, online_scoresdef inference(self, image, dets):"""Args: dets: 检测结果, [x1, y1, x2, y2, score]Returns: np.array([[x1, y1, x2, y2, conf, ids], ...])"""bboxes, ids, scores = self._tracker_update(dets, image)if len(bboxes) == 0:return []# Bounding boxes format change: tlwh -> xyxybboxes = np.array(bboxes)bboxes[..., [2, 3]] += bboxes[..., [0, 1]]bboxes = np.c_[bboxes, np.array(scores), np.array(ids)]return bboxesif __name__ == '__main__':# Create an argument parser to handle command-line argumentsparser = argparse.ArgumentParser()parser.add_argument('--model', type=str, default='yolov5s.onnx', help='Path to ONNX model')parser.add_argument('--source', type=str, default=str('test.mp4'), help='Path to input image')parser.add_argument('--imgsz', type=tuple, default=(640, 640), help='Image input size')parser.add_argument('--conf', type=float, default=0.25, help='Confidence threshold')parser.add_argument('--iou', type=float, default=0.45, help='NMS IoU threshold')parser.add_argument('--infer_tool', type=str, default='openvino', choices=("openvino", "onnxruntime"), help='选择推理引擎')parser.add_argument('--is_track', type=bool, default=True, help='是否启用跟踪')parser.add_argument('--track_thresh', type=float, default=0.5, help='tracking confidence threshold')parser.add_argument('--track_buffer', type=int, default=30, help='the frames for keep lost tracks, usually as same with FPS')parser.add_argument('--match_thresh', type=float, default=0.8, help='matching threshold for tracking')parser.add_argument('--min_box_area', type=float, default=10, help='filter out tiny boxes',)parser.add_argument('--mot20', dest='mot20', default=False, action='store_true', help='test mot20.',)args = parser.parse_args()# Build modelmodel = YOLOv5(args.model, args.imgsz, args.infer_tool)bytetrack = ByteTrackerONNX(args)# 读取视频,解析帧数宽高,保存视频cap = cv2.VideoCapture(args.source)width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)fps = cap.get(cv2.CAP_PROP_FPS)frame_count = cap.get(cv2.CAP_PROP_FRAME_COUNT)video_writer = cv2.VideoWriter('demo.mp4', cv2.VideoWriter_fourcc(*"mp4v"), fps, (int(width), int(height)))frame_id = 1while True:start_time = time.time()ret, img = cap.read()if not ret:break# Inferenceboxes = model(img, conf_threshold=args.conf, iou_threshold=args.iou)# trackif args.is_track:boxes = bytetrack.inference(img, boxes)# Visualizeif len(boxes) > 0:model.draw_and_visualize(copy.deepcopy(img), boxes, video_writer, vis=False, save=True, is_track=args.is_track)end_time = time.time() - start_timeprint('frame {}/{} (Total time: {:.2f} ms)'.format(frame_id, int(frame_count), end_time * 1000))frame_id += 1

结果显示如下:

在这里插入图片描述

具体时间消耗:

预处理时间:0.005s(包含Pad)
推理时间:0.04~0.05s(Openvino)
推理时间:0.08~0.09s(ONNXRuntime)
后处理时间:0.001s
ByteTrack时间:0.001~0.002s
注:640×640下。

lap+cython-bbox安装

这篇关于YOLOv5-Openvino-ByteTrack【CPU】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/792929

相关文章

使用Python检查CPU型号并弹出警告信息

《使用Python检查CPU型号并弹出警告信息》本教程将指导你如何编写一个Python程序,该程序能够在启动时检查计算机的CPU型号,如果检测到CPU型号包含“I3”,则会弹出一个警告窗口,感兴趣的小... 目录教程目标方法一所需库步骤一:安装所需库步骤二:编写python程序步骤三:运行程序注意事项方法二

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

Java程序到CPU上执行 的步骤

相信很多的小伙伴在最初学习编程的时候会容易产生一个疑惑❓,那就是编写的Java代码究竟是怎么一步一步到CPU上去执行的呢?CPU又是如何执行的呢?今天跟随小编的脚步去化解开这个疑惑❓。 在学习这个过程之前,我们需要先讲解一些与本内容相关的知识点 指令 指令是指导CPU运行的命令,主要由操作码+被操作数组成。 其中操作码用来表示要做什么动作,被操作数是本条指令要操作的数据,可能是内存地址,也

[yolov5] --- yolov5入门实战「土堆视频」

1 项目介绍及环境配置 下载yolov5 tags 5.0源码,https://github.com/ultralytics/yolov5/tree/v5.0,解压 Pycharm 中创建conda虚拟环境 激活conda虚拟环境 根据作者提供的requirements.txt文件,pip install -r requirements.txt 如果作者没有提供requirement.txt文件

win10不用anaconda安装tensorflow-cpu并导入pycharm

记录一下防止忘了 一、前提:已经安装了python3.6.4,想用tensorflow的包 二、在pycharm中File-Settings-Project Interpreter点“+”号导入很慢,所以直接在cmd中使用 pip install -i https://mirrors.aliyun.com/pypi/simple tensorflow-cpu下载好,默认下载的tensorflow

定位cpu占用过高的线程和对应的方法

如何定位cpu占用过高的线程和对应的方法? 主要是通过线程id找到对应的方法。 1 查询某个用户cpu占用最高的进程号 top -u 用户名 2 查询这个进程中占用cpu最高的线程号 top –p 进程号-H    3 查询到进程id后把进程相关的代码打印到jstack文件 jstack -l pid > jstack.txt 4 在jstack文件中通过16进制的线程id搜索到

CPU亲和性设置 代码示例 sched_setaffinity sched_getaffinity

视频教程在这: cpu亲和性设置,NCCL,sched_setaffinity sched_getaffinity,CPU_ZERO、SET、ISSET、linux_哔哩哔哩_bilibili 一、CPU亲和性简介 CPU亲和性(CPU Affinity)设置是操作系统中一个重要的性能优化手段,它允许程序或进程被绑定到特定的CPU核心上运行。这样做的好处包括减少缓存未命中、降低线程迁移(co

ubuntu16.04 caffe(github源码cpu)+python3.5+opencv3.4.5安装编译

https://www.cnblogs.com/hanjianjian90/p/10604926.html

Ubuntu 标题栏实时显示网速CPU内存

1.用 wget 下载 indicator-sysmonitor,终端执行命令: $ wget -c https://launchpad.net/indicator-sysmonitor/trunk/4.0/+download/indicator-sysmonitor_0.4.3_all.deb2.安装依赖: sudo apt-get install python python-psu

木马导致inetinfo.exe进程占100% CPU的解决方法

电脑进程inetinfo.exe主要用于支持微软Windows IIS网络服务的除错。正常情况下,inetinfo.exe 是 IIS admin Service 或 world wide web publishing service 。这个程序对你系统的正常运行是非常重要的。inetinfo.exe进程属于系统组件,请不要试图停止和删除!   但是如果inetinfo.exe占用CPU 10