华容道问题求解_详细设计(四)之查找算法2_BFS

2024-03-10 03:44

本文主要是介绍华容道问题求解_详细设计(四)之查找算法2_BFS,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(续上篇)
利用BFS查找,会找到最短路径(没有权重的图),这个道理比较简单,这是由于寻找路径的方法都是从起点或者接近起点的位置开始的。查找过程如果画出图来,类似于一圈圈的放大,你可以想想是一个类似圆的渐开线的扫描过程。
前文已经谈到,这个BFS和DFS的主要不同就是对当前参数的保存方法不同,即BFS采用队列保存,DFS采用堆栈保存。因此,将DFS的保存当前参数的方法改成队列就可以实现BFS了。

BFS 核心代码

       internal bool SearchPathBFS(int endHashCode){if (statesObjQueue.Count == 0) return false;//##############################################################//## BFS 代码的改变如下                                        ##//##############################################################var lastState = DequeueState(); //var lastHashCode=   layoutHashCodeStk.Pop();// map it to the current  state MapToCurState(lastState);var curBestSteps = lastState.bestSteps+1;while (gameState.openPieces.Count > 0 && gameState.curOpenIdx < gameState.openPieces.Count)// There are open pieces not moved , move them one by one.{var selOpenPcs = gameState.openPieces[gameState.curOpenIdx];var selPcs = selOpenPcs.piece;var toPcs = selOpenPcs.MoveToPcs;var dirFrom = MoveToPcs(selPcs, toPcs);gameState.selPcs = selPcs;var redundant = RedundantState(gameState);StateShot stateShot = new StateShot(gameState, 0);// record the current best steps stateShot.bestSteps = curBestSteps;//Create the graph data structure AddEdgeToGraph(lastState, stateShot);if (gameState.curOpenIdx < lastState.openPcsArr.Length){gameState.curOpenIdx++;lastState.lastOpenIdx = gameState.curOpenIdx;}if (!redundant.Item1){SearchOpenPieces();stateShot = new StateShot(gameState, 0);stateShot.bestSteps = curBestSteps;//##############################################################//## BFS 代码的改变如下                                       ##//##############################################################         EnqueueState(lastState, stateShot, selPcs, toPcs);//add edge to the grapph and enqueue the current state}// 2024-01-30 Found the least steps with BFS and it runs very fast.// Judge if it succeeds that caocao is at the exit of the board.if (endHashCode==0 && selPcs.type == 4){if (selPcs.hrdPos.X == 2 && selPcs.hrdPos.Y == 4){RefreshLayout();Application.DoEvents();var verTex = GetMyHashCodeV1(gameState);// the layout might not the same that needs to record all of them if (!endVtxLst.Contains(verTex)) endVtxLst.Add(verTex);//MessageBox.Show(string.Format("Success! The best steps is {0},the hash code is {1}", hCodeAndShotShortPathDict[verTex].Item2, verTex));//return false;//debug}}else if (redundant.Item2 == endHashCode){RefreshLayout();Application.DoEvents();var verTex = GetMyHashCodeV1(gameState);// the layout might not the same that needs to record all of them if (!endVtxLst.Contains(verTex)) endVtxLst.Add(verTex);}MapToCurState(lastState); // back the last state and try to moev next open pieces}return true;}

和DFS的代码对比一下就会发现,除了堆栈改成队列之外,代码几乎没有做什么改变。

下面给出 两个主要变化的函数代码
入队代码:

       private void EnqueueState(StateShot source, StateShot dest, Piece selPcs, Piece dstPcs){statesObjQueue.Enqueue(dest);var toHashCode = GetMyHashCode(dest);stateHashCodeLst.Add(toHashCode);int[,] layoutArr = new int[6, 7];Array.Copy(dest.layoutOfIdx, layoutArr, layoutArr.Length);hCodeAndShotDict.Add(toHashCode, (dest.basePcs, selPcs.idx, dstPcs.idx));var frmHashCode = GetMyHashCode(source);AddEdge(frmHashCode, toHashCode, 1);}

出队代码

       private StateShot DequeueState(){var stshot = statesObjQueue.Dequeue();//stateHashCodeStack.Pop();return stshot;}

其中 statesObjQueue 的定义为;

//used to store the game state and the shortest path from last state For BFS search private Queue<StateShot> statesObjQueue= new Queue<StateShot>();

运行之后,就很快找到了最少步数,虽然在过程当中也构建了一个图,但是并没有使用这个图。

结果也比较理想,是一个对称的结果,符合预期。这个原因,我想是因为在BFS 的求解过程当中的每一次探索的步数的基数都是一样的,而路径是不同的,因此也就必然会出现这么一种结果。
运行结果获得30种符合要求的布局,根据对称性,应该是15 中不同的解法。
截图如下:
说明:左面列表数值是该布局对应的Hash值
在这里插入图片描述
在这里插入图片描述
对比上面的布局,发现这是个对称的布局。这些解法中,最少的是81步,最多的是 115步。
其余结果请参考下列视频。另外 “不同解法 ”的含义就是最终的布局不同。

横刀立马最佳结果集


基本功能的探索到此告一段落,后面将对显示和布局设计进行一些尝试。

marasun BJFWDQ
204-03-09

这篇关于华容道问题求解_详细设计(四)之查找算法2_BFS的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/792923

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1