第五十四回 高太尉大兴三路兵 呼延灼摆布连环马-AI通过构建并训练CNN网络来进行飞机识别

本文主要是介绍第五十四回 高太尉大兴三路兵 呼延灼摆布连环马-AI通过构建并训练CNN网络来进行飞机识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

呼延灼举荐了百胜将韩滔和天目将彭玘做先锋。

两军对战,韩滔和秦明斗二十回合,呼延灼与林冲斗在一起,花荣与彭玘斗在一处,后彭玘与一丈青扈三娘斗在一起,被扈三娘抓住。

尽管梁山占优,宋江也没有乘胜追击,因为呼延灼带的是连环马,马带马甲,人披铁铠,射箭都不顶用。打完后,宋江亲自给彭玘解绑,送到大寨。

第二天呼延灼又列出连环马冲杀,宋江被李逵护着逃到水边,被李俊、张横、张顺、三阮接到战船上才逃脱。小兵折损大半,幸好头领们都还在。山下的四间酒店也被官兵拆了。大家一点办法也没有,晁盖只好下令严防死守。宋江不肯上山,亲自坐镇鸭嘴滩。

宋江很多事还是亲历亲为的,怪不得大家都服他! 人工智能,也需要亲自实践一下才行!

AI通过构建并训练CNN网络来进行飞机识别

在星河社区2019年的培训课程中,有一节课程是通过构建并训练CNN网络来进行飞机识别。课程中有一项作业,是通过各种方法增加准确率。这门课程主要面向初学者,所以增加准确率的方法主要是调整神经网络的深度和channel值,方法很简单,但是确实非常有助于初学者对神经网络的理解。

项目地址:7天入门深度学习 d2 作业飞机识别 - 飞桨AI Studio星河社区

直接点击,然后fork执行即可。

网络结构如图:

因为需要飞桨1.6.2环境和相关数据集,所以下面的代码只能展示:

# 导入依赖包
import sys
import numpy as np# import lr_utils
import matplotlib.pyplot as plt
import paddle
import paddle.fluid as fluid%matplotlib inline# 加载数据, 并展示一张,由于数据图片较小,所以显示出来比较模糊
train_set_x_orig=np.load("data/data1589/traindata.npy")
train_set_y=np.load("data/data1589/trainlabel.npy")
test_set_x_orig=np.load("data/data1589/testdata.npy")
test_set_y=np.load("data/data1589/testlabel.npy")
plt.imshow(train_set_x_orig[2])
plt.show()# 输出数据集的信息
m_train=train_set_x_orig.shape[0]
m_test=test_set_x_orig.shape[0]
num_px=train_set_x_orig.shape[1]print ("训练样本数: m_train = " + str(m_train))
print ("测试样本数: m_test = " + str(m_test))
print ("图片高度/宽度: num_px = " + str(num_px))
print ("图片大小: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_set_x shape: " + str(train_set_x_orig.shape))
print ("train_set_y shape: " + str(train_set_y.shape))
print ("test_set_x shape: " + str(test_set_x_orig.shape))
print ("test_set_y shape: " + str(test_set_y.shape))###因为paddlepaddle认识的数据是3*l*h的,所以需要进行数据格式转换
train_set_x = np.array(train_set_x_orig).reshape(m_train, 3, num_px, num_px).astype(np.float32)
train_set_y = np.array(train_set_y).reshape(m_train, 1).astype(np.float32)
test_set_x = np.array(test_set_x_orig).reshape(m_test, 3, num_px, num_px).astype(np.float32)
test_set_y = np.array(test_set_y).reshape(m_test, 1).astype(np.float32)#归一化
train_set_x=train_set_x/ 255.0 * 2.0 - 1.0test_set_x=test_set_x/ 255.0 * 2.0 - 1.0# 读取训练数据或测试数据
def read_data(train_set_x,train_set_y,buffer_size):def reader():for i in range(buffer_size):            yield train_set_x[i,:], int(train_set_y[i])            return readerdef convolutional_neural_network():"""定义卷积神经网络分类器:输入的二维图像,经过两个卷积-池化层,使用以softmax为激活函数的全连接层作为输出层Args:img -- 输入的原始图像数据Return:predict -- 分类的结果"""img = fluid.layers.data(name='img', shape =[3,32,32],dtype = 'float32')#多加了一个卷积池化层,最后加了drop,以提高准确率,降低过拟合
#    droped = fluid.layers.dropout(img,dropout_prob=1)#第一个卷积层#     hidden = fluid.nets.simple_img_conv_pool(input, num_filters, filter_size, pool_size, pool_stride, pool_padding=0)hidden=fluid.nets.simple_img_conv_pool(input=img,num_filters=250,filter_size=9,pool_size=1,pool_stride=1,pool_padding=0)#(50 10 5 1 0)#第二个卷积层
#    drop1 = fluid.layers.dropout(hidden,dropout_prob=0.2)h2=fluid.nets.simple_img_conv_pool(input=hidden,num_filters=150,filter_size=5,pool_size=1,pool_stride=1,pool_padding=0)h3=fluid.nets.simple_img_conv_pool(input=h2,num_filters=150,filter_size=3,pool_size=2,pool_stride=1,pool_padding=0)#(50 3 2 1 0)drop1 = fluid.layers.dropout(h3,dropout_prob=0.3)#     predict = fluid.layers.fc(h2,size=1,act='sigmoid')predict = fluid.layers.fc(drop1,size=2,act='softmax') #softmaxreturn predict #配置网络结构
def train_func():label = fluid.layers.data(name='label', shape = [1],dtype = 'int64')predict = convolutional_neural_network()# 损失函数,cross_entropy 函数内部使用交叉熵损失函数cost = fluid.layers.cross_entropy(input=predict, label=label)avg_cost = fluid.layers.mean(cost)return avg_costdef optimizer_func():# 创建Momentum优化器,并设置学习率(learning_rate)、动量(momentum)optimizer=fluid.optimizer.Momentum(learning_rate=0.0001,momentum=0.5)#optimizer=fluid.optimizer.Adam(learning_rate=0.001,momentum=0.5)return optimizerfeed_order = ['img', 'label']     #数据格式
params_dirname = "./DNN_model"    #模型保存路径# 事件处理函数
from paddle.utils.plot import Ploter
from  paddle.fluid.contrib.trainer import EndStepEvent
train_title = "Train cost"
test_title = "Test cost"
plot_cost = Ploter(train_title, test_title)step = 0
def event_handler_plot(event):global stepif isinstance(event, EndStepEvent):if event.step % 2 == 0: # 若干个batch,记录costif event.metrics[0] < 10:plot_cost.append(train_title, step, event.metrics[0])plot_cost.plot()if event.step % 20 == 0: # 若干个batch,记录costtest_metrics = trainer.test(reader=test_reader, feed_order=feed_order)if test_metrics[0] < 10:plot_cost.append(test_title, step, test_metrics[0])plot_cost.plot()#             if test_metrics[0] < 1.0:
#                 # 如果准确率达到阈值,则停止训练
#                 print('loss is less than 10.0, stop')
#                 trainer.stop()if test_metrics[0] < 0.001:# 如果准确率达到阈值,则停止训练print('loss is less than 10.0, stop')trainer.stop()# 将参数存储,用于预测使用if params_dirname is not None:trainer.save_params(params_dirname )step += 1#训练所用到的具体数据
#主要是增加了训练量,从209提高到5800BATCH_SIZE=128
# 设置训练reader
train_reader = paddle.batch(paddle.reader.shuffle(read_data(train_set_x,train_set_y,buffer_size=5880), #buff原来是209buf_size=50),#buf原来是50batch_size=BATCH_SIZE)
# 设置测试reader
test_reader = paddle.batch(paddle.reader.shuffle(read_data(test_set_x,test_set_y,buffer_size=2000), buf_size=20),#buf原来是20batch_size=BATCH_SIZE)#创建训练器
from  paddle.fluid.contrib.trainer import Trainer
trainer= Trainer(train_func= train_func,place= place,optimizer_func= optimizer_func )#开始训练
trainer.train(reader=train_reader,num_epochs=60 ,#num 30event_handler=event_handler_plot,feed_order= feed_order )from  paddle.fluid.contrib.inferencer import Inferencer
inferencer = Inferencer(infer_func=convolutional_neural_network, param_path=params_dirname, place=place)#取出一个 mini-batch
for mini_batch in test_reader(): # 转化为 numpy 的 ndarray 结构,并且设置数据类型test_x = np.array([data[0] for data in mini_batch]).astype("float32")test_y = np.array([data[1] for data in mini_batch]).astype("int64")# 真实进行预测mini_batch_result = inferencer.infer({'img': test_x})result=(mini_batch_result[0][:,-1]>0.5)+0   #True or False 转0/1,直接后面+0即可# 打印预测结果
#     mini_batch_result = np.argsort(mini_batch_result) #找出可能性最大的列标,升序排列,###经过分析,这是多分类问题会用到的函数,找出概率值最大的下标#     mini_batch_result = mini_batch_result[0][:, -1]  #把这些列标拿出来print('预测结果:%s'%result)# 打印真实结果    label = np.array(test_y) # 转化为 labelprint('真实结果:%s'%label)break # 查看百分比
def right_ratio(right_counter, total):ratio = float(right_counter)/totalreturn ratio# 评估函数 data_set 是一个reader
def evl(data_set):total = 0    #操作的元素的总数right_counter = 0  #正确的元素pass_num = 0
#     print(liruoyi)for mini_batch in data_set():pass_num += 1#预测test_x = np.array([data[0] for data in mini_batch]).astype("float32")test_y = np.array([data[1] for data in mini_batch]).astype("int64")mini_batch_result = inferencer.infer({'img': test_x})mini_batch_result=(mini_batch_result[0][:,-1]>0.5)+0   #True or False 转0/1,直接后面+0即可#预测的结果# mini_batch_result = np.argsort(mini_batch_result) #找出可能性最大的列标,升序排列# mini_batch_result = mini_batch_result[0][:, -1]+0  #把这些列标拿出来#print('预测结果:%s'%result)label = np.array(test_y) # 转化为 label# print('真实结果:%s'%label)#计数label_len = len(label)total += label_lenfor i in range(label_len):if mini_batch_result[i] == label[i]:right_counter += 1ratio = right_ratio(right_counter, total)return ratioratio = evl(train_reader)
print('训练数据的正确率 %0.2f%%'%(ratio*100))ratio = evl(test_reader)
print('预测数据的正确率 %0.2f%%'%(ratio*100))

提高准确率的方法就是改变卷积的大小和深度。比如原来的卷积大小是10和5 ,深度是两层,最终试出来的卷积大小是9、5和3,深度是三层。这也是为什么有人问某某模型为什么参数是xxx,我会回答“作者试出来”的原因,因为理论只是指导,最终大多数模型的参数都是通过实践试出来的,哪个最好,论文里就写哪个。

大家也可以去修改试试。当然卷积网络还需要注意最终全连接层的参数对应,这个在实践中特别容易出问题,多练练就好了。

呼延灼从东京汴梁请来了轰天雷凌振。凌振的炮威力很大,晁盖派了水路六个头领去捉拿凌振,把他也请上了山。

大家商量破连环马的计策,金钱豹子汤隆说我有一个计策。需要一个兵器和我的一个哥哥,可以破连环马。

欲知后事如何,且听下回分解。

这篇关于第五十四回 高太尉大兴三路兵 呼延灼摆布连环马-AI通过构建并训练CNN网络来进行飞机识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/792553

相关文章

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应