【数据分享】2013-2022年全国范围逐月CO栅格数据(免费获取)

本文主要是介绍【数据分享】2013-2022年全国范围逐月CO栅格数据(免费获取),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

空气质量数据是在我们日常研究中经常使用的数据!之前我们给大家分享了2000-2022年全国范围逐月的PM2.5栅格数据和2013-2022年全国范围逐月SO2栅格数据(可查看之前的文章获悉详情)。

本次我们给大家带来的是2013-2022年全国范围的逐月的CO栅格数据,原始数据格式为NetCDF (.nc),空间分辨率为1km和10km两种(其中:2013-2018年为10km,2019-2022年为1km),单位为mg/m3,坐标系为WGS_1984。为了方便大家使用,我们将数据格式转换为了栅格格式(.tif)。

数据来源于韦晶博士、李占清教授团队发布在国家青藏高原科学数据中心网站上的中国高分辨率高质量近地表空气污染物数据集(ChinaHighAirPollutants, CHAP),CO数据是该数据集的主要指标之一。该数据是利用人工智能技术,考虑了空气污染的时空异质特性,从大数据(如地基观测、卫星遥感产品、大气再分析和模式模拟资料等)中生产得到2013年至2022年全国无缝隙地面CO数据。另外,该数据持续更新,如有需要大家可持续关注!

大家可以自己去国家青藏高原科学数据中心下载nc格式的原始数据,也可以在本公众号回复关键词 161 免费获取nc格式,以及我们转换出的tif格式两种格式的数据。无需转发文章,无套路获取!以下为数据的详细介绍:

01 数据预览

该数据包括nc和tif两种格式!两种数据格式的命名规则不同:

(1)nc.格式:CHAP_CO_ab_yyyymm_V2.nc

  • CHAP:表示数据集名称
  • CO:表示空气污染物的指标名称
  • ab:表示时间和空间分辨率,其中a表示时间分辨率(M表示为逐月数据),b表示空间分辨率(1K表示1km,10k表示10km)
  • yyyymm:表示数据时间,其中yyyy代表年,mm表示月
  • V2:表示数据版本
  • nc:表示数据格式

例如:CHAP_CO_M1K_202212_V2.nc,表示为2022年12月的1km分辨率的逐月的CO数据。

(2).tif格式:按照年月日的日期格式(yyyymm.tif)命名栅格文件

例如:202101.tif,表示为2021年1月的CO栅格数据。

我们具体以2022年12月全国范围的CO数据为例来预览一下:

2022年12月全国CO

02 数据详情

时间范围

2013-2022年(逐月)

空间范围:

全国

数据格式:

NetCDF [.nc] 和.tif

空间分辨率:

2013-2018年:10km

2019-2022年:1km

数据单位:

mg/m3

数据坐标:

WGS_1984

原始数据的下载网站:

数据来源于美国马里兰大学韦晶博士、李占清教授团队在国家青藏高原科学数据中心平台上分享的数据,网址为:https://data.tpdc.ac.cn/zh-hans/data/dab9def0-ff3b-4195-b5ad-34eafb192f05

数据引用:

韦晶, 李占清. (2023). 中国高分辨率高质量地面CO数据集(2013-2022). 国家青藏高原数据中心. https://doi.org/10.5281/zenodo.4641530.

Wei, J., Li, Z. (2023). ChinaHighCO: High-resolution and High-quality Ground-level CO dataset for China (2013-2022). National Tibetan Plateau / Third Pole Environment Data Center.

https://doi.org/10.5281/zenodo.4641530.

相关论文引用:

Wei, J., Li, Z., Wang, J., Li, C., Gupta, P., & Cribb, M. (2023). Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations. Atmospheric Chemistry and Physics, 23, 1511–1532. https://doi.org/10.5194/acp-23-1511-2023

如有数据使用需求请按照官方平台的要求进行引用,更多数据详情可以查看官网获悉!

02 数据获取

这篇关于【数据分享】2013-2022年全国范围逐月CO栅格数据(免费获取)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/792299

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

C#实现WinForm控件焦点的获取与失去

《C#实现WinForm控件焦点的获取与失去》在一个数据输入表单中,当用户从一个文本框切换到另一个文本框时,需要准确地判断焦点的转移,以便进行数据验证、提示信息显示等操作,本文将探讨Winform控件... 目录前言获取焦点改变TabIndex属性值调用Focus方法失去焦点总结最后前言在一个数据输入表单

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

通过C#获取PDF中指定文本或所有文本的字体信息

《通过C#获取PDF中指定文本或所有文本的字体信息》在设计和出版行业中,字体的选择和使用对最终作品的质量有着重要影响,然而,有时我们可能会遇到包含未知字体的PDF文件,这使得我们无法准确地复制或修改文... 目录引言C# 获取PDF中指定文本的字体信息C# 获取PDF文档中用到的所有字体信息引言在设计和出

python中os.stat().st_size、os.path.getsize()获取文件大小

《python中os.stat().st_size、os.path.getsize()获取文件大小》本文介绍了使用os.stat()和os.path.getsize()函数获取文件大小,文中通过示例代... 目录一、os.stat().st_size二、os.path.getsize()三、函数封装一、os