OpenMP、MPI 和 MapReduce 对比

2024-03-09 17:08
文章标签 对比 mapreduce mpi openmp

本文主要是介绍OpenMP、MPI 和 MapReduce 对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenMP和MPI是并行编程的两个手段,对比如下:

  • OpenMP:线程级(并行粒度);共享存储;隐式(数据分配方式);可扩展性差;
  • MPI:进程级;分布式存储;显式;可扩展性好。
OpenMP采用共享存储,意味着它只适应于SMP,DSM机器,不适合于集群。


MPI虽适合于各种机器,但它的编程模型复杂:

  • 需要分析及划分应用程序问题,并将问题映射到分布式进程集合;
  • 需要解决通信延迟大和负载不平衡两个主要问题;(重要)
  • 调试MPI程序麻烦;
  • MPI程序可靠性差,一个进程出问题,整个程序将错误;

与OpenMP,MPI相比,MapReduce的优势

  • 自动并行;
  • 容错;
  • MapReduce学习门槛低。

(转自http://blog.csdn.net/zdy0_2004/article/details/41493897)


MapReduce一种编程模型,用于大规模数据集(大于1TB)的并行运算。在多核和多处理器、Cell processor以及异构机群上同样有良好的性能。


与MPI相比,MapReduce的优点如下:

1.MapReduce job可以起很多instance,各个instance在计算的过程中互不干扰。比如,用户起了10000个instance,如果集群资源不足,Job不需要等待,可以先执行1000个instance,剩余的等到集群有资源的时候再计算。

2. MapReduce job没有instance间通信开销。

3.如果MapReduce Job的某个instance计算failed,调度系统会自动重试,再次计算,并不影响其他结果,也不需要所有instance重新计算。

与MPI相比,MapReduce的缺点是:MapReduce job的计算的中间结果是以文件形式存储,效率较低。


与MapReduce相比,MPI的优点如下:

1.MPI job在计算的数据都在内存中,不需要存储中间文件,因此效率高。

2.如果集群资源充足,MPI job启动所有instance进行计算,速度快。

但与MapReduce相较,MPI的缺点也比较明显:

1.如果集群资源不够起所有instance,则MPI的job一直等待。

2.如果MPI Job的某个instance计算failed,则所有instance都需要重新计算。

3.MPI的Job instance不能起太多,因为会增加进程间通信的开销。

(转自 http://blog.csdn.net/xiyunxiaodu/article/details/24775743)



与MR相比,MPI的优点如下:

1.MPI job在计算的数据都在内存中,不需要存储中间文件,因此效率高。

2.如果集群资源充足,MPI job启动所有instance进行计算,速度快。

但与MR相较,MPI的缺点也比较明显:

1.如果集群资源不够起所有instance,则MPI的job一直等待。

2.如果MPI Job的某个instance计算failed,则所有instance都需要重新计算。

3.MPI的Job instance不能起太多,因为会增加进程间通信的开销。

这篇关于OpenMP、MPI 和 MapReduce 对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/791347

相关文章

poj 1502 MPI Maelstrom(单源最短路dijkstra)

题目真是长得头疼,好多生词,给跪。 没啥好说的,英语大水逼。 借助字典尝试翻译了一下,水逼直译求不喷 Description: BIT他们的超级计算机最近交货了。(定语秀了一堆词汇那就省略吧再见) Valentine McKee的研究顾问Jack Swigert,要她来测试一下这个系统。 Valentine告诉Swigert:“因为阿波罗是一个分布式共享内存的机器,所以它的内存访问

免费也能高质量!2024年免费录屏软件深度对比评测

我公司因为客户覆盖面广的原因经常会开远程会议,有时候说的内容比较广需要引用多份的数据,我记录起来有一定难度,所以一般都用录屏工具来记录会议内容。这次我们来一起探索有什么免费录屏工具可以提高我们的工作效率吧。 1.福晰录屏大师 链接直达:https://www.foxitsoftware.cn/REC/  录屏软件录屏功能就是本职,这款录屏工具在录屏模式上提供了多种选项,可以选择屏幕录制、窗口

类的load方法和initialize方法对比

1. load方法在main()之前被调用,而initialize方法在main()之后调用 load方法实际是在load_images过程中被调用的。load_images会将当前应用依赖的所有镜像(动态库)加载到内存,在在加载中首先是对镜像进行扫描,将所有包含 load 方法的类加入列表 loadable_classes ,然后从这个列表中逐一调用其所包含的 load 方法。 +[XXCl

JavaScript正则表达式六大利器:`test`、`exec`、`match`、`matchAll`、`search`与`replace`详解及对比

在JavaScript中,正则表达式(Regular Expression)是一种用于文本搜索、替换、匹配和验证的强大工具。本文将深入解析与正则表达式相关的几个主要执行方法:test、exec、match、matchAll、search和replace,并对它们进行对比,帮助开发者更好地理解这些方法的使用场景和差异。 正则表达式基础 在深入解析方法之前,先简要回顾一下正则表达式的基础知识。正则

【HarmonyOS】-TaskPool和Worker的对比实践

ArkTS提供了TaskPool与Worker两种多线程并发方案,下面我们将从其工作原理、使用效果对比两种方案的差异,进而选择适用于ArkTS图片编辑场景的并发方案。 TaskPool与Worker工作原理 TaskPool与Worker两种多线程并发能力均是基于 Actor并发模型实现的。Worker主、子线程通过收发消息进行通信;TaskPool基于Worker做了更多场景化的功能封装,例

一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)

1.没有分段的情况 原函数为一元二次凹函数(开口向下),如下: 因为要使得其存在正解,必须满足,那么。 上述函数的最优结果为:,。 对应的mathematica代码如下: Clear["Global`*"]f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)Maximize[{f0[x, a, b,

claude和chatgpt对比:哪一个更适合你?

前言 我们都知道,Claude和ChatGPT都是当前人工智能领域中备受关注的对话生成模型,作为国外AI模型两大巨头,好像他们的实力都不相上下呀! 这时就会有很多同学疑惑,那我如果想选择AI,到底是选择Claude,还是ChatGPT呢?哪个更好呢?他们之间有什么不同独特的地方呢?他们又分别适合在哪些场景使用呢? 技术背景 Claude是由Anthropic公司开发的高性能模型,而Chat

算法复杂度 —— 数据结构前言、算法效率、时间复杂度、空间复杂度、常见复杂度对比、复杂度算法题(旋转数组)

目录 一、数据结构前言 1、数据结构 2、算法 3、学习方法 二、 算法效率 引入概念:算法复杂度  三、时间复杂度 1、大O的渐进表示法 2、时间复杂度计算示例  四、空间复杂度 计算示例:空间复杂度 五、常见复杂度对比 六、复杂度算法题(旋转数组) 1、思路1 2、思路2 3、思路3 一、数据结构前言 1、数据结构         数据结构(D

Matplotlib图像读取和输出及jpg、png格式对比,及透明通道alpha设置

图像像素值 图像像素值一般size为3,也就是通道数,分别代表R,G,B,如果只有单一 一个值则表示灰度值,也就是说一张二维图片,当长和宽都为1080时,那么若是灰度图像,图像尺寸为(1080,1080,1)若是RGB图像则为(1080,1080,3), jpg、png图像格式 jpg图像的灰度值范围和RGB范围为[0,255],数值类型为uint8,也就是无符号整数 png图像的灰度值范

泛型参Class、Class、Class的对比区别

1.原文链接 泛型参Class、Class、Class的对比区别 https://blog.csdn.net/jitianxia68/article/details/73610606 <? extends T>和<? super T> https://www.cnblogs.com/drizzlewithwind/p/6100164.html   2.具体内容: 泛型参数Class、