大语言模型如何充分理解人类自然语言指令

2024-03-09 06:44

本文主要是介绍大语言模型如何充分理解人类自然语言指令,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       经过海量数据预训练后的语言模型虽然具备了大量的知识,但是由于其训练的目标仅是进行下一个词的预测,此时的模型还不能够理解并遵循人类自然语言的指令指令微调(Instruction Tuning),是指在已经训练好的语言模型的基础上,通过使用有标注的特定任务数据,进行进一步微调,从而使得模型具备遵循指令的能力

1.探索模型遵循人类指令能力

        即使经过海量数据预训练的语言模型在词汇、语法和句式上有很高的掌握度,但由于最初的训练目标主要是预测下一个词,所以它们可能并不能完美地理解或执行复杂的自然语言指令,也无法完全符合人类的意图和期望。尤其是涉及深层次的语义理解、逻辑推理和道德伦理判断时,模型可能会出现误解、偏差或无法恰当地处理特殊情况。

       为了克服这个问题,研究者们正在探索多种方法来改进和提升语言模型的理解与执行能力,其中包括:

  1. ** Fine-tuning(微调)**:针对特定任务或应用领域,利用含有标注数据的子集对模型进行再训练,使其更加适应特定场景下的自然语言理解和生成任务。

  2. ** Instruction Tuning(指令微调)**:通过大量指令和对应输出的示例对模型进行训练,使模型学会理解并遵循人类给出的自然语言指令。

  3. ** Chain-of-Thought Prompting(思维链)**:启发模型通过生成中间推理步骤的方式来展示其思维过程,提高模型的透明度和逻辑推理能力。思维链详细内容请见:Chain-of-thought prompting(链式思考提示)

  4. ** Reinforcement Learning with Human Feedback (RLHF)**:利用人类反馈优化模型,通过奖励模型学习人类对智能体行为的偏好,从而调整模型的输出以更符合人类期望。

  5. ** Ethics and Bias Mitigation**:针对模型可能存在的不公平性、歧视性或违反伦理道德的问题,研究者正在努力开发新的训练技术和审核机制,以减少模型输出中的负面倾向。

       通过上述及其他相关技术的不断发展和完善,语言模型将有望在理解并遵循人类自然语言指令方面取得显著进步。

2.原始训练目标与指令执行任务之间的差异

       模型的原始训练目标通常是指在模型预训练阶段所追求的任务。例如,在GPT系列模型中,原始训练目标通常是自回归语言建模(Autoregressive Language Modeling),即模型基于前面的文本序列预测下一个词语的概率分布,旨在让模型学习到语言的统计规律和上下文依赖关系,从而能够生成连贯且具有一定意义的文本。

        然而,指令执行任务则更加具体和多样化,它们可能是对模型提出的具体需求,比如根据某个主题写一篇文章、解答一个数学问题、翻译一段文字、编辑代码、创作诗歌,或者对提供的信息进行逻辑推理等。这些任务不仅需要模型具备基本的语言生成能力,还要求模型能理解复杂指令,并根据指令内容进行有针对性的思考和操作。

因此,模型的原始训练目标与指令执行任务需求之间的差异主要体现在以下几个方面:

  1. 任务导向性:原始训练目标主要是无监督的学习,而指令执行任务是有明确目的和导向性的。
  2. 精准响应:预训练模型可能生成任意相关文本,但指令任务需要模型精确按照指令行动,生成指定类型的高质量输出。
  3. 跨领域适应:预训练关注的是通用语言建模,而指令任务可能涵盖众多专业领域和应用情境,需要模型具有更强的领域适应性。
  4. 逻辑处理和控制:许多指令任务要求模型进行逻辑推理、条件判断或受控生成,这在单纯的自回归语言建模中不是必需的。

为了弥合这种差异,研究人员采用指令微调等技术,使模型在已有的语言理解基础上,进一步强化其遵循指令并执行相关任务的能力。

3.弥合差异

       通过指令微调(Instruction Tuning)或任务特定微调(Task-Specific Fine-tuning)的方法,研究者可以利用预训练模型强大的语言理解基础,并针对具体的下游任务对模型进行针对性训练。这样做的目的是使模型能够更好地理解和遵循人类给出的指令,并据此执行各种复杂的自然语言处理任务。

       在指令微调过程中,模型会在新的数据集上进行训练,这个数据集包含了各种带有明确指令和相应正确输出样例的示例对。通过学习这些示例,模型不仅能继续保留其对一般语言结构的理解,还能学会如何根据不同的指令调整自身行为,以满足不同场景下的任务需求。

       此外,还有诸如多任务学习、提示工程(Prompt Engineering)、Adapter模块插入等多种技术手段,都是为了提高模型对于不同指令任务的适应性和表现力,确保模型能够在面对多样化的指令时,能够更准确地转换原始训练目标,高效地完成实际应用中的各项指令执行任务。

4.理解与执行人类自然语言指令

        指令微调关注模型如何理解和遵循更为抽象和开放的自然语言指令。指令微调强调了模型对于人类自然语言指令的理解与执行能力。这一方法允许大型预训练语言模型(如GPT-3系列或其他Transformer架构的模型)在接触到具体的、结构化的指令时,能够准确地解析其含义,并据此产生符合要求的输出。这里的“指令”可以是非常多样化的,例如:“根据给出的文章摘要写一篇文章”,“将这段话从英语翻译成法语”,或是“解释以下科学概念”。

       指令微调的数据集通常包含了丰富的指令样本以及对应的期望输出,通过训练,模型得以学习不同指令与适当行动之间的映射关系,即使未曾见过完全相同的指令也能通过泛化能力来处理类似的新指令。这种技术增强了模型的可解释性和可控性,使其在面对新的任务需求时,仅通过文本指令就能灵活应对,无需进行大量额外的模型结构调整或重新训练。

5.指令微调的具体作用

       通过指令微调,模型能够学习如何根据上下文和指令要求生成针对性强、符合人类预期的输出,从而显著提升模型在多领域、多任务场景下的适用性和表现力。同时,这种技术也有助于提高模型的可控性和安全性,降低在缺乏明确规范的情况下生成不当内容的风险。 

       指令微调不仅增强了模型对复杂指令的理解与执行能力,还赋予了模型更强的泛化能力,使其能够跨越多个领域和任务,根据具体情境灵活响应。这一过程通常涉及对预训练大模型如Transformer架构的微调,在特定指令指导的任务数据集上进行额外训练,让模型学会从给定的上下文中提取关键信息,并按照指令指示去生成或选择最合适的答案。

       另外,通过指令微调还可以增加模型的可解释性及可控性,因为模型能够更加明确地遵循人工设定的规则和边界条件。这意味着当应用于敏感领域时,如果微调得当,模型将更能避免生成不符合伦理、法律或其他特定标准的内容,从而提高其在实际应用中的安全性和可靠性。这也是当前和未来人工智能研究中非常重要的一个方向。

       指令微调在机器学习尤其是大型语言模型领域有着重要作用,主要体现在以下几个方面:

  1. 增强任务适应性

    对预训练的大规模语言模型(如GPT系列、LLM等)进行指令微调,可以使模型更好地理解并执行特定领域的任务指令,比如编程、文本生成、问答、翻译、摘要等。
  2. 提升Zero-Shot能力

    指令微调能让模型在没有见过的下游任务上表现出更好的零样本迁移学习能力,即仅通过指令说明就能完成新任务,无需额外大量标注数据进行专门训练。
  3. 增强控制性与鲁棒性

    通过对模型进行指令引导的微调,可以提高模型对于不同类型指令的响应准确性和一致性,进而增强模型行为的可控性,并可能有助于减少错误输出,提高模型在面对复杂和多样化的输入时的鲁棒性。
  4. 改进输出质量与合规性

    在微调过程中,模型能学习如何依据具体的指令限制内容生成,这有助于减少有害信息的生成,提高生成内容的质量和合规性,尤其是在处理敏感话题或应用在专业领域时。
  5. 资源效率

    尽管大规模模型的微调可能需要大量的计算资源,但通过精细的指令微调可以在一定程度上优化模型性能,使得模型在较小的数据集上也能得到有效的提升,从而节省成本。
  6. 促进交互性

    指令微调使得模型能够更好地理解和执行用户的自然语言指令,这对于构建智能助手和对话系统来说至关重要,提高了用户体验和系统的实用性。

       综上所述,指令微调是一种有效的方法,通过微调预先训练好的模型以理解并响应不同的指令集,从而改善模型在多种应用场景中的性能和实用性。

补充:

1.有监督微调(Supervised Finetuning)和指令微调

       有监督微调(Supervised Finetuning)和指令微调(Instruction Tuning)是两种不同的模型优化策略,尽管它们都属于深度学习模型训练的后期调整阶段,但各自的关注点和应用场景有所不同:

  1. 有监督微调(Supervised Finetuning)

    • 在预训练模型的基础上,有监督微调通常是指利用带有标签的特定任务数据集,通过反向传播算法更新模型参数的过程。
    • 预训练模型如BERT、GPT等在大规模无标注文本数据上预先训练,学得通用语言表示。之后,针对具体任务(如文本分类、情感分析、问答系统等),我们会在该任务的标记数据集上进行微调,使得模型能够更好地适应和解决这些具体问题。
    • 微调过程中,模型会调整所有层的参数,以便更好地捕获特定任务的模式和规律。
  2. 指令微调(Instruction Tuning)

    • 指令微调是一种特殊的微调形式,主要关注模型对自然语言指令的理解和执行能力。
    • 它通常用于增强大型语言模型(如GPT-3)在遵循用户给定的多模式指令时的性能。在指令微调过程中,模型通过学习大量的包含明确指令及其预期输出的数据对,以理解并按照各种各样的指令去生成相应的输出。
    • 指令微调旨在让模型能够在不改变架构的前提下,无需额外的训练或者环境交互就能执行新任务,增强了模型的灵活性和泛化能力,特别是在跨任务设置下表现更好。

       有监督微调聚焦于特定领域的任务性能提升,而指令微调则特别关注模型如何理解和遵循更为抽象和开放的自然语言指令,实现跨任务、按需响应的能力。

这篇关于大语言模型如何充分理解人类自然语言指令的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/789851

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言