人工蜂群算法

2024-03-09 05:04
文章标签 算法 人工 蜂群

本文主要是介绍人工蜂群算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人工蜂群算法

人工蜂群算法(Artificial Bee Colony Optimization,ABC)是一种基于蜜蜂觅食行为的优化算法,由土耳其学者Karaboga于2005年提出,算法模拟蜜蜂的采蜜行为对优化问题进行求解。

算法原理

ABC算法的核心思想是将优化问题的解空间视作蜜源,蜜蜂作为搜索代理在解空间中进行探索。在算法的每一轮迭代中,蜜蜂根据当前蜜源的质量和周围蜜源的信息,选择性地进行勘探和开发,从而逐步优化搜索空间。蜜源的位置代表了优化问题的可能解决方案,蜜源的花蜜量对应于相关解决方案的优劣,ABC算法与优化问题的对应关系如下表所示。

ABC优化问题
蜜源可行解: X i = ( x i 1 , x i 2 , … , x i D ) X_i=(x_{i1},x_{i2},\dots,x_{iD}) Xi=(xi1,xi2,,xiD)
花蜜量适应度

算法超参数

ABC算法的超参数包括雇佣蜂比例和蜜源保留次数阈值等,参数影响着蜜蜂在搜索空间中的行为和搜索效率。

  • e m p l o y e d _ r a t e employed\_rate employed_rate:雇佣蜂比例;
  • l i m i t limit limit:蜜源保留次数的阈值;
  • NP:种群大小;
  • Gmax:最大迭代数。

寻优公式

人工蜂群由雇佣蜂(employed bees)、围观蜂(onlookers)和侦察蜂(scouts)三类蜜蜂组成。在标准的ABC算法中,蜂群的前半部分由受雇的人工蜜蜂组成,后半部分为观察蜂。每个蜜源只有一只雇佣蜂,受雇蜜蜂的数量等于蜂巢周围食物源的数量。被雇用的蜜蜂的食物源已被蜜蜂吃光,它就会转变为侦察蜂探索新的蜜源。ABC通过重复执行雇佣蜂、观察蜂和侦察蜂三个阶段来寻找问题的最优解。

  1. 雇佣蜂阶段,雇佣蜂在现有蜜源的位置开发新的蜜源。
    v i j t = x i j t + ϕ i j t ( x i j t − x k j t ) (1) v_{ij}^t=x_{ij}^t + \phi_{ij}^t(x_{ij}^t - x_{kj}^t) \tag{1} vijt=xijt+ϕijt(xijtxkjt)(1)
    其中, k ∈ { 1 , ⋯ , N P } k \in \{1,\cdots,NP\} k{1,,NP} k ≠ i k\neq i k=i ϕ i j ∈ [ − 1 , − 1 ] \phi_{ij} \in [-1,-1] ϕij[1,1]
    X i t + 1 = { X i t , if  f i t ( X i ) t > f i t ( V i t ) V i t + 1 , e l s e (2) X_{i}^{t+1}= \begin{cases} X_{i}^t, & \text{if $fit(X_i)^t > fit(V_i^t)$}\\ V_{i}^{t+1},& else \end{cases} \tag{2} Xit+1={Xit,Vit+1,if fit(Xi)t>fit(Vit)else(2)
  2. 观察蜂阶段,观察蜂对雇佣蜂分享的蜜源信息进行分享,采用轮盘赌策略来选址蜜源跟踪开采新的蜜源,公式与式(1)等价。
  3. 侦察蜂阶段,蜜源 X i X_i Xi拥有参数trial,统计蜜源没有被更新的次数,当蜜源更新被保留时,trail设置为0;反之,trail加1。如果一个蜜源经过多次开采没被更新,当trail超过了阈值limit,那么需要抛弃该蜜源,启动侦察探索新的蜜源。
    x i j = x i , j m i n + r a n d ( 0 , 1 ) ⋅ ( x i , j m a x − x i , j m i n ) (3) x_{ij}=x_{i,j}^{min}+rand(0,1) \cdot (x_{i,j}^{max} - x_{i,j}^{min}) \tag{3} xij=xi,jmin+rand(0,1)(xi,jmaxxi,jmin)(3)
    雇佣蜂阶段和观察蜂阶段体现了算法的开发过程即算法对已知优质解的利用,侦察蜂阶段体现了算法的探索过程即算法对新解的探索。

初始化

初始解应当覆盖整个搜索空间,一般采用均匀分布随机生成初始解。
x i j 0 = x i , j m i n + r a n d ( 0 , 1 ) ⋅ ( x i , j m a x − x i , j m i n ) (4) x_{ij}^0=x_{i,j}^{min}+rand(0,1) \cdot (x_{i,j}^{max} - x_{i,j}^{min}) \tag{4} xij0=xi,jmin+rand(0,1)(xi,jmaxxi,jmin)(4)
其中,rand(0,1)表示0-1之间的随机数, x i j m a x x_{ij}^{max} xijmax x i j m i n x_{ij}^{min} xijmin分别表示该问题第j个维度变量的上下界。

伪代码


输入:超参数 ( e m p l o y e d _ r a t e , l i m i t , N P , G m a x ) (employed\_rate,limit,NP,Gmax) (employed_rate,limit,NP,Gmax)和搜索边界 X m i n X_{min} Xmin, X m a x X_{max} Xmax
输出:最优解
1:初始化
2:根据式(4)初始化位置种群X
3:记录群体最优gbest
4:优化搜索
5:For G = 1:Gmax
6: \qquad 雇佣蜂更新
7: \qquad 观察蜂更新
8: \qquad 侦察蜂更新
9: \qquad 更新群体最优 g b e s t gbest gbest
10:End


注:优化算法并不保证能够得到问题的最优解,因此,算法输出的最优解并非问题的整体最优解,而是搜索过程中最好的一个解。

实验

实验选取二维的平方和函数,函数的最小值在点(a,b)取得,最小值为0。
f ( x 1 , x 2 ) = ( x 1 − a ) 2 + ( x 2 − b ) 2 (5) f(x_1,x_2) = (x_1 - a)^2 + (x_2-b)^2 \tag{5} f(x1,x2)=(x1a)2+(x2b)2(5)

实验参数如下:

参数
问题维度D2
种群数NP30
最大进化次数Gmax50
雇佣蜂比例0.5
limit10
取值范围(-100,100)

人工蜂群算法搜索过程

人工蜂群算法搜索过程

人工蜂群算法收敛曲线

人工蜂群算法收敛曲线

最优值最差值平均值标准差
1.686e-115.679e-76.952e-81.324e-7

代码获取

关注微信公众号数学模型与算法回复 ABC算法获取python代码

参考文献

[1] 何尧,刘建华,杨荣华.人工蜂群算法研究综述[J].计算机应用研究,2018,35(05):1281-1286.
[2] Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department, 2005.
[3] Akay B, Karaboga D. A modified artificial bee colony algorithm for real-parameter optimization[J]. Information sciences, 2012, 192: 120-142.

这篇关于人工蜂群算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/789593

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/