Python算法题集_搜索二维矩阵

2024-03-09 03:28

本文主要是介绍Python算法题集_搜索二维矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python算法题集_搜索二维矩阵

  • 题51:搜索二维矩阵
  • 1. 示例说明
  • 2. 题目解析
    • - 题意分解
    • - 优化思路
    • - 测量工具
  • 3. 代码展开
    • 1) 标准求解【矩阵展开为列表+二分法】
    • 2) 改进版一【行*列区间二分法】
    • 3) 改进版二【第三方模块】
  • 4. 最优算法
  • 5. 相关资源

本文为Python算法题集之一的代码示例

题51:搜索二维矩阵

1. 示例说明

  • 给你一个满足下述两条属性的 m x n 整数矩阵:

    • 每行中的整数从左到右按非严格递增顺序排列。
    • 每行的第一个整数大于前一行的最后一个整数。

    给你一个整数 target ,如果 target 在矩阵中,返回 true ;否则,返回 false

    示例 1:

    img

    输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
    输出:true
    

    示例 2:

    img

    输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
    输出:false
    

    提示:

    • m == matrix.length
    • n == matrix[i].length
    • 1 <= m, n <= 100
    • -104 <= matrix[i][j], target <= 104

2. 题目解析

- 题意分解

  1. 本题是在已排序二维矩阵中查找目标数字
  2. 最快方式就是二分法

- 优化思路

  1. 通常优化:减少循环层次

  2. 通常优化:增加分支,减少计算集

  3. 通常优化:采用内置算法来提升计算速度

  4. 分析题目特点,分析最优解

    1. 本题的已排序二维矩阵可以连成排序一维列表,实现一维列表二分法

    2. 本题的二维矩阵首尾可以连成排序一维列表,定位具体行之后,在具体行中再进行二分查找

    3. 可以考虑使用排序列表操作模块bisect

- 测量工具

  • 本地化测试说明:LeetCode网站测试运行时数据波动很大【可把页面视为功能测试】,因此需要本地化测试解决数据波动问题
  • CheckFuncPerf(本地化函数用时和内存占用测试模块)已上传到CSDN,地址:Python算法题集_检测函数用时和内存占用的模块
  • 本题本地化超时测试用例自己生成,详见章节【最优算法】,代码文件包含在【相关资源】中

3. 代码展开

1) 标准求解【矩阵展开为列表+二分法】

将矩阵展开为列表,再通过二分法查找目标数值是否存在

页面功能测试,马马虎虎,超过53%在这里插入图片描述

import CheckFuncPerf as cfpclass Solution:def searchMatrix_base(self, matrix, target):if not matrix:return Falseimaxrow, imaxcol, listval = len(matrix), len(matrix[0]), []for iIdx in range(len(matrix)):listval.extend(matrix[iIdx])ileft, iright = 0, len(listval) - 1while ileft <= iright:imid = (iright - ileft) // 2 + ileftif target == listval[imid]:return Trueif target < listval[imid]:iright = imid - 1else:ileft = imid + 1return FalseaSolution = Solution()
result = cfp.getTimeMemoryStr(aSolution.searchMatrix_base, mapnums, itarget)
print(result['msg'], '执行结果 = {}'.format(result['result']))# 运行结果
函数 searchMatrix_base 的运行时间为 12768.90 ms;内存使用量为 467828.00 KB 执行结果 = True

2) 改进版一【行*列区间二分法】

将下标换算为行*最大列数+列,将矩阵换算为0 -> 行 * 列的线性区间,在这个区间通过二分法查找目标数值是否存在

页面功能测试,马马虎虎,超过33%在这里插入图片描述

import CheckFuncPerf as cfpclass Solution:def searchMatrix_ext1(self, matrix, target):if not matrix:return Falseimaxrow, imaxcol = len(matrix), len(matrix[0])ileft, iright = 0, imaxrow * imaxcol - 1while ileft <= iright:imid = (ileft + iright) // 2mid_row, mid_col = imid // imaxcol, imid % imaxcolif matrix[mid_row][mid_col] == target:return Trueelif matrix[mid_row][mid_col] < target:ileft = imid + 1elif matrix[mid_row][mid_col] > target:iright = imid - 1return FalseaSolution = Solution()
result = cfp.getTimeMemoryStr(aSolution.searchMatrix_ext1, mapnums, itarget)
print(result['msg'], '执行结果 = {}'.format(result['result']))# 运行结果
函数 searchMatrix_ext1 的运行时间为 0.00 ms;内存使用量为 12.00 KB 执行结果 = True

3) 改进版二【第三方模块】

将矩阵展开为列表,再使用排序列表操作模块bisect来查找插入位置

页面功能测试,性能一般,超过82%在这里插入图片描述

import CheckFuncPerf as cfpclass Solution:def searchMatrix_ext2(self, matrix, target):if not matrix:return Falseimaxrow, imaxcol, listval = len(matrix), len(matrix[0]), []for iIdx in range(len(matrix)):listval.extend(matrix[iIdx])from bisect import bisect_leftipos = bisect_left(listval, target)if ipos == imaxrow * imaxcol:return Falsereturn listval[ipos] == targetaSolution = Solution()
result = cfp.getTimeMemoryStr(aSolution.searchMatrix_ext2, mapnums, itarget)
print(result['msg'], '执行结果 = {}'.format(result['result']))# 运行结果
函数 searchMatrix_ext2 的运行时间为 0.00 ms;内存使用量为 12.00 KB 执行结果 = True

4. 最优算法

根据本地日志分析,最优算法为第2种方式【行*列区间二分法】searchMatrix_ext1

本题测试数据,似乎能推出以下结论:

  1. 二分法查询性能非常夸张,简直是瞬间定位【1亿的数组,1毫秒定位】
  2. 数据的迁移【从矩阵->列表】耗时耗内存,这也是大数据兴起的原因之一【数据的迁移代价远高于计算代价】
  3. 第三方模块的函数消耗内存非常小
import random
imaxrow, imaxcol, istart = 10000, 10000, 0
mapnums = [[0 for x in range(imaxcol)] for y in range(imaxrow)]
for irow in range(imaxrow):for icol in range(imaxcol):istart += random.randint(0, 6)mapnums[irow][icol] = istart
itarget = mapnums[imaxrow//2][imaxcol//2]
aSolution = Solution()
result = cfp.getTimeMemoryStr(aSolution.searchMatrix_base, mapnums, itarget)
print(result['msg'], '执行结果 = {}'.format(result['result']))
result = cfp.getTimeMemoryStr(aSolution.searchMatrix_ext1, mapnums, itarget)
print(result['msg'], '执行结果 = {}'.format(result['result']))
result = cfp.getTimeMemoryStr(aSolution.searchMatrix_ext2, mapnums, itarget)
print(result['msg'], '执行结果 = {}'.format(result['result']))# 算法本地速度实测比较
函数 searchMatrix_base 的运行时间为 12768.90 ms;内存使用量为 467828.00 KB 执行结果 = True
函数 searchMatrix_ext1 的运行时间为 0.00 ms;内存使用量为 12.00 KB 执行结果 = True
函数 searchMatrix_ext2 的运行时间为 6336.15 ms;内存使用量为 1508.00 KB 执行结果 = True

5. 相关资源

本文代码已上传到CSDN,地址:Python算法题源代码_LeetCode(力扣)_搜索二维矩阵

一日练,一日功,一日不练十日空

may the odds be ever in your favor ~

这篇关于Python算法题集_搜索二维矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/789418

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py