Matlab|基于目标级联法的微网群多主体分布式优化调度

2024-03-09 00:04

本文主要是介绍Matlab|基于目标级联法的微网群多主体分布式优化调度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

主要内容   

1.1 上层微网群模型

1.2 下层微网模型

  部分程序   

 实现效果   

下载链接


主要内容   

本文复现《基于目标级联法的微网群多主体分布式优化调度》文献的目标级联部分,

建立微网群系统的两级递阶优化调度模型: 上层是微网群能量调度中心优化调度模型,下层是子微网优化调度模型,然后对所建递阶优化调度模型耦合性和分布性进行分析,采用一种新型的协同优化方法———目标级联法,实现上下层模型的解耦独立优化,以3微网为算例进行验证,证明方法的可行性。

1.1 上层微网群模型

1.2 下层微网模型

  部分程序   

%程序开发时间:2023年1月26日
%欢迎关注微信公众号:电力程序
%----------------------------
%%目标级联协调优化
gPMG = zeros(3,24);%微网群与微网间联络功率
gPpcc1 = zeros(1,24);%微网1与微网群联络功率,下同
gPpcc2 =zeros(1,24);
gPpcc3 = zeros(1,24);
parameterATC;
figure(1);
errorSet = [];
for k=1:8
[y1(k),gPpcc1,x_P_g1,x_P_ch1,x_P_dis1,x_P_w1,x_P_v1,x_c_ld1,Load1]=lower1(pho,gPMG,v,w);%下层微网1
[y2(k),gPpcc2,x_P_ch2,x_P_dis2,x_P_w2,x_P_v2,x_c_ld2,Load2]=lower2(pho,gPMG,v,w);%下层微网2
[y3(k),gPpcc3,x_P_g3,x_P_ch3,x_P_dis3,x_P_w3,x_P_v3,x_c_ld3,Load3]=lower3(pho,gPMG,v,w);%下层微网3
[y4(k),gPMG]=upperthree(pho,v,w,gPpcc1,gPpcc2,gPpcc3);%上层微网群
%%----得到结果----
gPMG=value(gPMG);
gPpcc1=value(gPpcc1);
gPpcc2=value(gPpcc2);
gPpcc3=value(gPpcc3);
gPMGc(:,k)=gPMG(:,10);%10时刻微网群连接变量数据储存
gPpcc1c(k)=gPpcc1(10);%10时刻微网1连接变量数据储存
gPpcc2c(k)=gPpcc2(10);%10时刻微网2连接变量数据储存
gPpcc3c(k)=gPpcc3(10);%10时刻微网3连接变量数据储存postError = norm(gPMG-[gPpcc1;gPpcc2;gPpcc3])disp(sprintf('postError=%f',postError));errorSet = [errorSet postError];%画图figure(1),plot(errorSet),pause(0.1)xlabel('迭代次数');ylabel('误差值');v=v+2*w*w*postError;w=beta*w;yalmip('clear');
end
%最终迭代后结果图
figure;
ldz=max(x_c_ld1,0);
ldf=min(x_c_ld1,0);
wwz=max(gPpcc1,0);
wwf=min(gPpcc1,0);
yyf=[-x_P_ch1;ldf;wwf]';
bar(yyf,'stack');
hold on
yyz=[-x_P_dis1;x_P_g1;x_P_w1;x_P_v1;ldz;wwz]';
bar(yyz,'stack');
plot(Load1,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网1功率');
sy=legend('储能充电','负荷响应','接受微网群电功率','储能放电','发电','风电','光伏','负荷响应','供给其他微网','微网1负荷');
sy.NumColumns = 3;
ylim([-6 14]);
figure;
ldz=max(x_c_ld2,0);
ldf=min(x_c_ld2,0);
wwz=max(gPpcc2,0);
wwf=min(gPpcc2,0);
yyf=[-x_P_ch2;ldf;wwf]';
bar(yyf,'stack');
hold on
yyz=[-x_P_dis2;x_P_w2;x_P_v2;ldz;wwz]';
bar(yyz,'stack');
plot(Load2,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网2功率');
sy=legend('储能充电','负荷响应','接受微网群电能','储能放电','风电','光伏','负荷响应','供给其他微网','微网2负荷');
sy.NumColumns = 3;
ylim([-2 8]);
figure;
ldz=max(x_c_ld3,0);
ldf=min(x_c_ld3,0);
wwz=max(gPpcc3,0);
wwf=min(gPpcc3,0);
yyf=[-x_P_ch3;ldf;wwf]';
bar(yyf,'stack');
hold on
yyz=[-x_P_dis3;x_P_g3;x_P_w3;x_P_v3;ldz;wwz]';
bar(yyz,'stack');
plot(Load3,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网3功率');
sy=legend('储能充电','负荷响应','接受微网群电能','储能放电','发电','风电','光伏','负荷响应','供给其他微网','微网3负荷');
sy.NumColumns = 3;
ylim([-5 11]);
figure;
title_name = '微网群连接变量时段10趋同过程';
title(title_name);   %%关键
subplot(311)
plot(gPpcc1c,'o--','LineWidth',1.5)
hold on
plot(gPMGc(1,:),'r-o','LineWidth',1.5)
grid on
legend('下层连接变量值','上层连接变量值');
xlabel('迭代次数');
ylabel('子微网1联络功率');
subplot(312)
plot(gPpcc2c,'o--','LineWidth',1.5)
hold on
plot(gPMGc(2,:),'r-o','LineWidth',1.5)
grid on
xlabel('迭代次数');
ylabel('子微网2联络功率');
subplot(313)
plot(gPpcc3c,'o--','LineWidth',1.5)
hold on
plot(gPMGc(3,:),'r-o','LineWidth',1.5)
grid on
xlabel('迭代次数');
ylabel('子微网3联络功率');

 实现效果   

下载链接

这篇关于Matlab|基于目标级联法的微网群多主体分布式优化调度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/788867

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案