Matlab|基于目标级联法的微网群多主体分布式优化调度

2024-03-09 00:04

本文主要是介绍Matlab|基于目标级联法的微网群多主体分布式优化调度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

主要内容   

1.1 上层微网群模型

1.2 下层微网模型

  部分程序   

 实现效果   

下载链接


主要内容   

本文复现《基于目标级联法的微网群多主体分布式优化调度》文献的目标级联部分,

建立微网群系统的两级递阶优化调度模型: 上层是微网群能量调度中心优化调度模型,下层是子微网优化调度模型,然后对所建递阶优化调度模型耦合性和分布性进行分析,采用一种新型的协同优化方法———目标级联法,实现上下层模型的解耦独立优化,以3微网为算例进行验证,证明方法的可行性。

1.1 上层微网群模型

1.2 下层微网模型

  部分程序   

%程序开发时间:2023年1月26日
%欢迎关注微信公众号:电力程序
%----------------------------
%%目标级联协调优化
gPMG = zeros(3,24);%微网群与微网间联络功率
gPpcc1 = zeros(1,24);%微网1与微网群联络功率,下同
gPpcc2 =zeros(1,24);
gPpcc3 = zeros(1,24);
parameterATC;
figure(1);
errorSet = [];
for k=1:8
[y1(k),gPpcc1,x_P_g1,x_P_ch1,x_P_dis1,x_P_w1,x_P_v1,x_c_ld1,Load1]=lower1(pho,gPMG,v,w);%下层微网1
[y2(k),gPpcc2,x_P_ch2,x_P_dis2,x_P_w2,x_P_v2,x_c_ld2,Load2]=lower2(pho,gPMG,v,w);%下层微网2
[y3(k),gPpcc3,x_P_g3,x_P_ch3,x_P_dis3,x_P_w3,x_P_v3,x_c_ld3,Load3]=lower3(pho,gPMG,v,w);%下层微网3
[y4(k),gPMG]=upperthree(pho,v,w,gPpcc1,gPpcc2,gPpcc3);%上层微网群
%%----得到结果----
gPMG=value(gPMG);
gPpcc1=value(gPpcc1);
gPpcc2=value(gPpcc2);
gPpcc3=value(gPpcc3);
gPMGc(:,k)=gPMG(:,10);%10时刻微网群连接变量数据储存
gPpcc1c(k)=gPpcc1(10);%10时刻微网1连接变量数据储存
gPpcc2c(k)=gPpcc2(10);%10时刻微网2连接变量数据储存
gPpcc3c(k)=gPpcc3(10);%10时刻微网3连接变量数据储存postError = norm(gPMG-[gPpcc1;gPpcc2;gPpcc3])disp(sprintf('postError=%f',postError));errorSet = [errorSet postError];%画图figure(1),plot(errorSet),pause(0.1)xlabel('迭代次数');ylabel('误差值');v=v+2*w*w*postError;w=beta*w;yalmip('clear');
end
%最终迭代后结果图
figure;
ldz=max(x_c_ld1,0);
ldf=min(x_c_ld1,0);
wwz=max(gPpcc1,0);
wwf=min(gPpcc1,0);
yyf=[-x_P_ch1;ldf;wwf]';
bar(yyf,'stack');
hold on
yyz=[-x_P_dis1;x_P_g1;x_P_w1;x_P_v1;ldz;wwz]';
bar(yyz,'stack');
plot(Load1,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网1功率');
sy=legend('储能充电','负荷响应','接受微网群电功率','储能放电','发电','风电','光伏','负荷响应','供给其他微网','微网1负荷');
sy.NumColumns = 3;
ylim([-6 14]);
figure;
ldz=max(x_c_ld2,0);
ldf=min(x_c_ld2,0);
wwz=max(gPpcc2,0);
wwf=min(gPpcc2,0);
yyf=[-x_P_ch2;ldf;wwf]';
bar(yyf,'stack');
hold on
yyz=[-x_P_dis2;x_P_w2;x_P_v2;ldz;wwz]';
bar(yyz,'stack');
plot(Load2,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网2功率');
sy=legend('储能充电','负荷响应','接受微网群电能','储能放电','风电','光伏','负荷响应','供给其他微网','微网2负荷');
sy.NumColumns = 3;
ylim([-2 8]);
figure;
ldz=max(x_c_ld3,0);
ldf=min(x_c_ld3,0);
wwz=max(gPpcc3,0);
wwf=min(gPpcc3,0);
yyf=[-x_P_ch3;ldf;wwf]';
bar(yyf,'stack');
hold on
yyz=[-x_P_dis3;x_P_g3;x_P_w3;x_P_v3;ldz;wwz]';
bar(yyz,'stack');
plot(Load3,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网3功率');
sy=legend('储能充电','负荷响应','接受微网群电能','储能放电','发电','风电','光伏','负荷响应','供给其他微网','微网3负荷');
sy.NumColumns = 3;
ylim([-5 11]);
figure;
title_name = '微网群连接变量时段10趋同过程';
title(title_name);   %%关键
subplot(311)
plot(gPpcc1c,'o--','LineWidth',1.5)
hold on
plot(gPMGc(1,:),'r-o','LineWidth',1.5)
grid on
legend('下层连接变量值','上层连接变量值');
xlabel('迭代次数');
ylabel('子微网1联络功率');
subplot(312)
plot(gPpcc2c,'o--','LineWidth',1.5)
hold on
plot(gPMGc(2,:),'r-o','LineWidth',1.5)
grid on
xlabel('迭代次数');
ylabel('子微网2联络功率');
subplot(313)
plot(gPpcc3c,'o--','LineWidth',1.5)
hold on
plot(gPMGc(3,:),'r-o','LineWidth',1.5)
grid on
xlabel('迭代次数');
ylabel('子微网3联络功率');

 实现效果   

下载链接

这篇关于Matlab|基于目标级联法的微网群多主体分布式优化调度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/788867

相关文章

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求