【深度学习笔记】稠密连接网络(DenseNet)

2024-03-08 18:04

本文主要是介绍【深度学习笔记】稠密连接网络(DenseNet),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图

5.12 稠密连接网络(DenseNet)

ResNet中的跨层连接设计引申出了数个后续工作。本节我们介绍其中的一个:稠密连接网络(DenseNet) [1]。 它与ResNet的主要区别如图5.10所示。

在这里插入图片描述

图5.10 ResNet(左)与DenseNet(右)在跨层连接上的主要区别:使用相加和使用连结

图5.10中将部分前后相邻的运算抽象为模块 A A A和模块 B B B。与ResNet的主要区别在于,DenseNet里模块 B B B的输出不是像ResNet那样和模块 A A A的输出相加,而是在通道维上连结。这样模块 A A A的输出可以直接传入模块 B B B后面的层。在这个设计里,模块 A A A直接跟模块 B B B后面的所有层连接在了一起。这也是它被称为“稠密连接”的原因。

DenseNet的主要构建模块是稠密块(dense block)和过渡层(transition layer)。前者定义了输入和输出是如何连结的,后者则用来控制通道数,使之不过大。

5.12.1 稠密块

DenseNet使用了ResNet改良版的“批量归一化、激活和卷积”结构,我们首先在conv_block函数里实现这个结构。

import time
import torch
from torch import nn, optim
import torch.nn.functional as Fimport sys
sys.path.append("..") 
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')def conv_block(in_channels, out_channels):blk = nn.Sequential(nn.BatchNorm2d(in_channels), nn.ReLU(),nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))return blk

稠密块由多个conv_block组成,每块使用相同的输出通道数。但在前向计算时,我们将每块的输入和输出在通道维上连结。

class DenseBlock(nn.Module):def __init__(self, num_convs, in_channels, out_channels):super(DenseBlock, self).__init__()net = []for i in range(num_convs):in_c = in_channels + i * out_channelsnet.append(conv_block(in_c, out_channels))self.net = nn.ModuleList(net)self.out_channels = in_channels + num_convs * out_channels # 计算输出通道数def forward(self, X):for blk in self.net:Y = blk(X)X = torch.cat((X, Y), dim=1)  # 在通道维上将输入和输出连结return X

在下面的例子中,我们定义一个有2个输出通道数为10的卷积块。使用通道数为3的输入时,我们会得到通道数为 3 + 2 × 10 = 23 3+2\times 10=23 3+2×10=23的输出。卷积块的通道数控制了输出通道数相对于输入通道数的增长,因此也被称为增长率(growth rate)。

blk = DenseBlock(2, 3, 10)
X = torch.rand(4, 3, 8, 8)
Y = blk(X)
Y.shape # torch.Size([4, 23, 8, 8])

5.12.2 过渡层

由于每个稠密块都会带来通道数的增加,使用过多则会带来过于复杂的模型。过渡层用来控制模型复杂度。它通过 1 × 1 1\times1 1×1卷积层来减小通道数,并使用步幅为2的平均池化层减半高和宽,从而进一步降低模型复杂度。

def transition_block(in_channels, out_channels):blk = nn.Sequential(nn.BatchNorm2d(in_channels), nn.ReLU(),nn.Conv2d(in_channels, out_channels, kernel_size=1),nn.AvgPool2d(kernel_size=2, stride=2))return blk

对上一个例子中稠密块的输出使用通道数为10的过渡层。此时输出的通道数减为10,高和宽均减半。

blk = transition_block(23, 10)
blk(Y).shape # torch.Size([4, 10, 4, 4])

5.12.3 DenseNet模型

我们来构造DenseNet模型。DenseNet首先使用同ResNet一样的单卷积层和最大池化层。

net = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.BatchNorm2d(64), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

类似于ResNet接下来使用的4个残差块,DenseNet使用的是4个稠密块。同ResNet一样,我们可以设置每个稠密块使用多少个卷积层。这里我们设成4,从而与上一节的ResNet-18保持一致。稠密块里的卷积层通道数(即增长率)设为32,所以每个稠密块将增加128个通道。

ResNet里通过步幅为2的残差块在每个模块之间减小高和宽。这里我们则使用过渡层来减半高和宽,并减半通道数。

num_channels, growth_rate = 64, 32  # num_channels为当前的通道数
num_convs_in_dense_blocks = [4, 4, 4, 4]for i, num_convs in enumerate(num_convs_in_dense_blocks):DB = DenseBlock(num_convs, num_channels, growth_rate)net.add_module("DenseBlosk_%d" % i, DB)# 上一个稠密块的输出通道数num_channels = DB.out_channels# 在稠密块之间加入通道数减半的过渡层if i != len(num_convs_in_dense_blocks) - 1:net.add_module("transition_block_%d" % i, transition_block(num_channels, num_channels // 2))num_channels = num_channels // 2

同ResNet一样,最后接上全局池化层和全连接层来输出。

net.add_module("BN", nn.BatchNorm2d(num_channels))
net.add_module("relu", nn.ReLU())
net.add_module("global_avg_pool", d2l.GlobalAvgPool2d()) # GlobalAvgPool2d的输出: (Batch, num_channels, 1, 1)
net.add_module("fc", nn.Sequential(d2l.FlattenLayer(), nn.Linear(num_channels, 10))) 

我们尝试打印每个子模块的输出维度确保网络无误:

X = torch.rand((1, 1, 96, 96))
for name, layer in net.named_children():X = layer(X)print(name, ' output shape:\t', X.shape)

输出:

0  output shape:	 torch.Size([1, 64, 48, 48])
1  output shape:	 torch.Size([1, 64, 48, 48])
2  output shape:	 torch.Size([1, 64, 48, 48])
3  output shape:	 torch.Size([1, 64, 24, 24])
DenseBlosk_0  output shape:	 torch.Size([1, 192, 24, 24])
transition_block_0  output shape:	 torch.Size([1, 96, 12, 12])
DenseBlosk_1  output shape:	 torch.Size([1, 224, 12, 12])
transition_block_1  output shape:	 torch.Size([1, 112, 6, 6])
DenseBlosk_2  output shape:	 torch.Size([1, 240, 6, 6])
transition_block_2  output shape:	 torch.Size([1, 120, 3, 3])
DenseBlosk_3  output shape:	 torch.Size([1, 248, 3, 3])
BN  output shape:	 torch.Size([1, 248, 3, 3])
relu  output shape:	 torch.Size([1, 248, 3, 3])
global_avg_pool  output shape:	 torch.Size([1, 248, 1, 1])
fc  output shape:	 torch.Size([1, 10])

5.12.4 获取数据并训练模型

由于这里使用了比较深的网络,本节里我们将输入高和宽从224降到96来简化计算。

batch_size = 256
# 如出现“out of memory”的报错信息,可减小batch_size或resize
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

输出:

training on  cuda
epoch 1, loss 0.0020, train acc 0.834, test acc 0.749, time 27.7 sec
epoch 2, loss 0.0011, train acc 0.900, test acc 0.824, time 25.5 sec
epoch 3, loss 0.0009, train acc 0.913, test acc 0.839, time 23.8 sec
epoch 4, loss 0.0008, train acc 0.921, test acc 0.889, time 24.9 sec
epoch 5, loss 0.0008, train acc 0.929, test acc 0.884, time 24.3 sec

小结

  • 在跨层连接上,不同于ResNet中将输入与输出相加,DenseNet在通道维上连结输入与输出。
  • DenseNet的主要构建模块是稠密块和过渡层。

参考文献

[1] Huang, G., Liu, Z., Weinberger, K. Q., & van der Maaten, L. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 1, No. 2).


注:除代码外本节与原书此节基本相同,原书传送门

这篇关于【深度学习笔记】稠密连接网络(DenseNet)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/787932

相关文章

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Spring Boot 整合 MyBatis 连接数据库及常见问题

《SpringBoot整合MyBatis连接数据库及常见问题》MyBatis是一个优秀的持久层框架,支持定制化SQL、存储过程以及高级映射,下面详细介绍如何在SpringBoot项目中整合My... 目录一、基本配置1. 添加依赖2. 配置数据库连接二、项目结构三、核心组件实现(示例)1. 实体类2. Ma

电脑win32spl.dll文件丢失咋办? win32spl.dll丢失无法连接打印机修复技巧

《电脑win32spl.dll文件丢失咋办?win32spl.dll丢失无法连接打印机修复技巧》电脑突然提示win32spl.dll文件丢失,打印机死活连不上,今天就来给大家详细讲解一下这个问题的解... 不知道大家在使用电脑的时候是否遇到过关于win32spl.dll文件丢失的问题,win32spl.dl

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解