Photometric Stereo光度立体三维重建(五)——基于深度学习的PS方法

本文主要是介绍Photometric Stereo光度立体三维重建(五)——基于深度学习的PS方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文将会介绍几种具有代表性的将深度学习与Photometric Stereo进行结合来进行三维重建的方法

一、开山之作 DPSN

论文:Deep Photometric Stereo Network
github:https://github.com/hiroaki-santo/deep-photometric-stereo-network

参数化的郎伯反射模型建立在理想的漫反射假设下,而且只适用于有限种类的材料,这种理想化的假设在实际环境中会受到全局照明以及光线遮挡的影响

论文提出直接用深度神经网络(DNN)来将观察值(像素强度)对表面法向量的映射进行直接建模
在这里插入图片描述
论文中还使用了Dropout来模拟光照被遮挡的影响

在这里插入图片描述
在这里插入图片描述

二、使用无监督学习 IRPS

论文:Neural Inverse Rendering for General Reflectance Photometric Stereo
github:https://github.com/t-taniai/neuralps

在learn-based PS中,会遇到的挑战有:
1、真实物体具有许多复杂以及未知的反射特性
2、训练数据的缺少,很难获取物体表面精确的法向量和BRDFs(也就是GT数据)
3、对输入数据进行任意排列不会改变输出的物体表面法向量

因此作者提出了一种以重构损失为指导的无监督学习方法
在这里插入图片描述
网络分为两个子网络,PSNet用于预测表面的法向量,IRNet使用渲染方程进行观察图像的逆渲染,然后将观测图像和逆渲染图像进行对比获得重构损失,同时网络的损失函数还增加了用最小二乘法算出的法向量以及PSNet预测出的反向量的误差损失,总的损失函数可以表达成:
在这里插入图片描述

三、使用全卷积网络 PS-FCN

论文:PS-FCN: A Flexible Learning Framework for Photometric Stereo
github:https://github.com/guanyingc/PS-FCN

在论文提出的网络中,给定任意数量的图像以及对应的光源方向作为输入,网络可以估计出物体表面的法向量

PS-FCN的结构为:
在这里插入图片描述
它主要包含三个部分:
1、共享权重的特征提取层
2、特征融合层,在特征融合层中,使用了Max-pooling,其优势在于可以面对输入数据顺序未知的情况,将任意特征图融合进同一特征图中,并且可以提取各个子特征图中最突出的信息
作者还对融合后的特征进行了可视化
在这里插入图片描述
a-h是128通道的特征图中的某8个通道,可以注意到具有相同法线方向的不同区域在不同通道中被激活,因此,每个通道都可以被解释为属于某一特定方向的法线的概率
3、法向量回归网络

网络采用的损失函数为:
在这里插入图片描述

四、建立逐个像素的观测映射 CNN-PS

论文:CNN-PS: CNN-based Photometric Stereo for General Non-Convex Surfaces
github:https://github.com/satoshi-ikehata/CNN-PS

作者提出了一种易于学习的表达,定义了一个观测映射,用映射后的表达来进行学习,作者定义这个映射为(α是正则化因子,L是光源方向):
在这里插入图片描述
在这里插入图片描述
然后作者通过将观测映射进行不同角度的旋转后,对每个像素进行法向量的预测,然后将不同角度下的预测取平均获得最终结果:
在这里插入图片描述

五、无需进行光源标定 SDPSNet

论文:Self-calibrating Deep Photometric Stereo Networks
github:https://github.com/guanyingc/SDPS-Net

本文的作者也是第三个网络的作者,基于PS-FCN,作者增加了光源自标定网络来进行未标定的PS重建

作者提出了一个两阶段的网络:
在这里插入图片描述
在第一阶段的光源标定网络中,作者没有将光源的标定视为回归任务,而是将其看作一个分类任务,因此作者将光源方向所在的空间进行离散化:
在这里插入图片描述
比如在水平的180度范围中划分为36份,在垂直的90度范围内也划分为36份,这样就有了1296份离散空间,但这么大类别的分类会显得困难,因此作者将水平和垂直两部分进行分别预测分类,因此光源标定网络的损失函数为:
在这里插入图片描述
第二部分的法向量回归网络的结构与损失函数与上面介绍的第三个网络是一样的

另外,还有如Learning to Minify Photometric Stereo(LMPS)和SPLINE-Net: Sparse Photometric Stereo through Lighting
Interpolation and Normal Estimation Networks等等的方法,有空会继续更新

我组建了一个光度立体技术的交流群,有兴趣的朋友可以一起来讨论一下!
在这里插入图片描述

这篇关于Photometric Stereo光度立体三维重建(五)——基于深度学习的PS方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/787238

相关文章

vue基于ElementUI动态设置表格高度的3种方法

《vue基于ElementUI动态设置表格高度的3种方法》ElementUI+vue动态设置表格高度的几种方法,抛砖引玉,还有其它方法动态设置表格高度,大家可以开动脑筋... 方法一、css + js的形式这个方法需要在表格外层设置一个div,原理是将表格的高度设置成外层div的高度,所以外层的div需要

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

四种Flutter子页面向父组件传递数据的方法介绍

《四种Flutter子页面向父组件传递数据的方法介绍》在Flutter中,如果父组件需要调用子组件的方法,可以通过常用的四种方式实现,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录方法 1:使用 GlobalKey 和 State 调用子组件方法方法 2:通过回调函数(Callb

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Java中Object类的常用方法小结

《Java中Object类的常用方法小结》JavaObject类是所有类的父类,位于java.lang包中,本文为大家整理了一些Object类的常用方法,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. public boolean equals(Object obj)2. public int ha

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex