【深度优先】【图论】【C++算法】2045. 到达目的地的第二短时间

2024-03-08 08:28

本文主要是介绍【深度优先】【图论】【C++算法】2045. 到达目的地的第二短时间,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

视频算法专题

LeetCode2045. 到达目的地的第二短时间

城市用一个 双向连通 图表示,图中有 n 个节点,从 1 到 n 编号(包含 1 和 n)。图中的边用一个二维整数数组 edges 表示,其中每个 edges[i] = [ui, vi] 表示一条节点 ui 和节点 vi 之间的双向连通边。每组节点对由 最多一条 边连通,顶点不存在连接到自身的边。穿过任意一条边的时间是 time 分钟。
每个节点都有一个交通信号灯,每 change 分钟改变一次,从绿色变成红色,再由红色变成绿色,循环往复。所有信号灯都 同时 改变。你可以在 任何时候 进入某个节点,但是 只能 在节点 信号灯是绿色时 才能离开。如果信号灯是 绿色 ,你 不能 在节点等待,必须离开。
第二小的值 是 严格大于 最小值的所有值中最小的值。
例如,[2, 3, 4] 中第二小的值是 3 ,而 [2, 2, 4] 中第二小的值是 4 。
给你 n、edges、time 和 change ,返回从节点 1 到节点 n 需要的 第二短时间 。
注意:
你可以 任意次 穿过任意顶点,包括 1 和 n 。
你可以假设在 启程时 ,所有信号灯刚刚变成 绿色 。
示例 1: 
输入:n = 5, edges = [[1,2],[1,3],[1,4],[3,4],[4,5]], time = 3, change = 5
输出:13
在这里插入图片描述

解释:
上面的左图展现了给出的城市交通图。
右图中的蓝色路径是最短时间路径。
花费的时间是:

  • 从节点 1 开始,总花费时间=0
  • 1 -> 4:3 分钟,总花费时间=3
  • 4 -> 5:3 分钟,总花费时间=6
    因此需要的最小时间是 6 分钟。
    右图中的红色路径是第二短时间路径。
  • 从节点 1 开始,总花费时间=0
  • 1 -> 3:3 分钟,总花费时间=3
  • 3 -> 4:3 分钟,总花费时间=6
  • 在节点 4 等待 4 分钟,总花费时间=10
  • 4 -> 5:3 分钟,总花费时间=13
    因此第二短时间是 13 分钟。
    示例 2:
    输入:n = 2, edges = [[1,2]], time = 3, change = 2
    输出:11
    解释:
    最短时间路径是 1 -> 2 ,总花费时间 = 3 分钟
    第二短时间路径是 1 -> 2 -> 1 -> 2 ,总花费时间 = 11 分钟

提示:

2 <= n <= 104
n - 1 <= edges.length <= min(2 * 104, n * (n - 1) / 2)
edges[i].length == 2
1 <= ui, vi <= n
ui != vi
不含重复边
每个节点都可以从其他节点直接或者间接到达
1 <= time, change <= 103

深度优先

经过的边数相同,则行驶时间相同,等待时间也相同。所以本题等效与求严格经过边数第二少。令经过最少的边数是x,则严格第二少的边数只能是x+1或x+2。因为:到达目的地后返回一个节点,再到达目的地,经过的边数是x+2。
本问题等于与:
一,计算最少经过边数x。
二,能否经过x+1条边到达目的的。

每个节点除了记录最少边数,还要记录另外一个状态i1:
初始为0,第一次到达是变成1。加入队列。
1变2的条件:新经过的边数等于x+1。加入队列。
2不会发生的变化。
每个节点最多入队两次。估计时间复杂度是:O(n)。
目的地的i1,如果为1,则严格第二少的边数为x+1,否则为x+2。

通过边数计算时间:
如果总时间time / change 是奇数需要等待 等待时间 change - (time/change)。

代码

核心代码

class CNeiBo2
{
public:CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);}CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);for (const auto& v : edges){m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);if (!bDirect){m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);}}}inline void Add(int iNode1, int iNode2){iNode1 -= m_iBase;iNode2 -= m_iBase;m_vNeiB[iNode1].emplace_back(iNode2);if (!m_bDirect){m_vNeiB[iNode2].emplace_back(iNode1);}}const int m_iN;const bool m_bDirect;const int m_iBase;vector<vector<int>> m_vNeiB;
};class Solution {
public:int secondMinimum(int n, vector<vector<int>>& edges, int time, int change) {CNeiBo2 neiBo(n, edges, false, 1);queue<pair<int,int>> que;		vector<int> vDis(n), vStatu(n);que.emplace(0,0);vStatu[0] = 1;while (que.size()){const auto [cur,curDis] = que.front();que.pop();for (const auto& next : neiBo.m_vNeiB[cur]){const int iNewDis = curDis + 1;if (0 == vStatu[next]){vDis[next] = iNewDis;vStatu[next] = 1;que.emplace(next,iNewDis);}else if ((1 == vStatu[next])&&( vDis[next]+1 == iNewDis)){vStatu[next] = 2;que.emplace(next, iNewDis);}}}const int iEdgeNum = (1 == vStatu.back()) ? (vDis.back() + 2) : (vDis.back() + 1);int iTime = 0;for (int i = 1; i <= iEdgeNum; i++){iTime += time;if ((iTime / change) & 1){if (iEdgeNum != i){iTime += (change - (iTime % change));}}}return iTime;}
};

测试用例

template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{
assert(t1 == t2);
}

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
Assert(v1[i], v2[i]);
}

}

int main()
{
int n, time, change;
vector<vector> edges;
{
Solution sln;
n = 5, edges = { {1,2},{1,3},{1,4},{3,4},{4,5} }, time = 3, change = 5;
auto res = sln.secondMinimum(n, edges, time, change);
Assert(13, res);
}
{
Solution sln;
n = 2, edges = { {1,2} }, time = 3, change = 2;
auto res = sln.secondMinimum(n, edges, time, change);
Assert(11, res);
}
}

2023年4月

class Solution {
public:
int secondMinimum(int n, vector<vector>& edges, int time, int change) {
m_vNeiB.resize(n + 1);
m_vDis.assign(n + 1,INT_MAX);
m_vDis2.assign(n + 1, INT_MAX);
for (const auto& e : edges)
{
m_vNeiB[e[0]].emplace_back(e[1]);
m_vNeiB[e[1]].emplace_back(e[0]);
}
std::queue<pair<int,int>> que;
que.emplace(1,0);
while (que.size())
{
const int iCur = que.front().first;
const int len = que.front().second;
que.pop();
for (const auto& next : m_vNeiB[iCur])
{
const int iNewLen = len + 1;
if (iNewLen >= m_vDis2[next])
{
continue;
}
que.emplace(next, iNewLen);
if (iNewLen < m_vDis[next])
{
m_vDis[next] = iNewLen;
}
else if (iNewLen != m_vDis[next])
{
m_vDis2[next] = iNewLen;
}
}
}
int tmp = m_vDis2[n];
int iRet = 0;
while (tmp–)
{
if ((iRet / change) & 1)
{
iRet += (change - iRet%change);
}
iRet += time;
}
return iRet;
}
vector<vector> m_vNeiB;
vector m_vDis;
vector m_vDis2;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【深度优先】【图论】【C++算法】2045. 到达目的地的第二短时间的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/786555

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

C++字符串提取和分割的多种方法

《C++字符串提取和分割的多种方法》在C++编程中,字符串处理是一个常见的任务,尤其是在需要从字符串中提取特定数据时,本文将详细探讨如何使用C++标准库中的工具来提取和分割字符串,并分析不同方法的适用... 目录1. 字符串提取的基本方法1.1 使用 std::istringstream 和 >> 操作符示