R语言,实现MACD指标计算:股票技术分析的利器系列(1)

2024-03-08 06:36

本文主要是介绍R语言,实现MACD指标计算:股票技术分析的利器系列(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

R语言,实现MACD指标计算:股票技术分析的利器系列(1)

    • MACD指标
    • 代码
    • 完整代码
      • 介绍代码
        • EMA函数
        • calculate_DEA 函数
        • calculate_MACD 函数
    • 运行结果


MACD指标

先看看官方介绍:

MACD (平滑异同平均线)
指标说明
DIF线:收盘价短期、长期指数平滑移动平均线间的差;
DEA线:DIF线的M日指数平滑移动平均线;
MACD线:DIF线与DEA线的差,彩色柱状线;
参数:SHORT(短期)、LONG(长期)、M 天数,一般为12、26、9。
用法
1.DIF、DEA均为正,DIF向上突破DEA,买入信号;
2.DIF、DEA均为负,DIF向下跌破DEA,卖出信号;
3.DEA线与K线发生背离,行情反转信号;
4.分析MACD柱状线,由红变绿(正变负),卖出信号;由绿变红,买入信号。

算法解释:

DIF:EMA(CLOSE,SHORT)-EMA(CLOSE,LONG);
DEA:EMA(DIF,MID);
MACD:(DIF-DEA)*2,COLORSTICK;

优势:

优势描述
趋势跟踪能力强MACD能够帮助识别市场的趋势方向,尤其是短期和长期趋势的转折点。通过观察DIF和DEA线的交叉,可以提供买入和卖出的时机。
清晰的信号MACD的交叉点和柱状线的变化提供了清晰的交易信号,使得投资者能够更容易地进行决策。
背离信号当DEA线与价格走势产生背离时,往往暗示着市场趋势即将发生变化,这为投资者提供了及时的行动信号。
柱状线变化反映市场动能MACD柱状线的颜色变化反映了市场的动能变化,红色代表正能量增强,绿色代表负能量增强,这有助于投资者了解市场情绪和力量的变化。

劣势:

劣势描述
滞后性MACD是一种滞后指标,它基于移动平均线的计算,因此在市场趋势发生变化之后才会发出信号,有时可能会错过市场的最佳买入或卖出时机。
假信号由于MACD的计算方式,有时会出现假信号,即在市场波动较大或横盘震荡时,可能会产生交叉但并未发生实际的趋势转折。
单一性MACD虽然能够提供趋势判断和交易信号,但它并不能完全覆盖市场的全部信息,投资者在使用时仍需要结合其他指标和技术分析方法进行综合判断。

代码

完整代码

请将下面代码的 C:/Users/daoli/Desktop/stock_demo/MACD 替换你们自己的工作路径

# 设置工作目录为MACD文件夹
setwd("C:/Users/daoli/Desktop/stock_demo/MACD")
# 打印当前工作目录
print(getwd())# 导入stock_data.R中的函数和数据
source('stock_data.R')# 定义函数计算指数移动平均线(Exponential Moving Average,EMA)
# 参数:
#   x: 输入数据
#   n: 平滑因子
# 返回值:
#   指数移动平均线
EMA <- function(x, n) {ema <- numeric(length(x))ema[1] <- x[1]alpha <- 2 / (n + 1)for (i in 2:length(x)) {ema[i] <- alpha * x[i] + (1 - alpha) * ema[i - 1]}return(ema)
}# 计算DIF指标
# 参数:
#   close: 收盘价数据
#   short: 短期平滑因子
#   long: 长期平滑因子
# 返回值:
#   DIF指标
calculate_DIF <- function(close, short, long) {dif <- EMA(close, short) - EMA(close, long)return(dif)
}# 计算DEA指标
# 参数:
#   dif: DIF指标数据
#   mid: 中期平滑因子
# 返回值:
#   DEA指标
calculate_DEA <- function(dif, mid) {dea <- EMA(dif, mid)return(dea)
}# 计算MACD指标
# 参数:
#   dif: DIF指标数据
#   dea: DEA指标数据
# 返回值:
#   MACD指标
calculate_MACD <- function(dif, dea) {macd <- (dif - dea) * 2return(macd)
}# 参数设置
SHORT <- 12
LONG <- 26
MID <- 9# 计算指标
dif <- calculate_DIF(stock_data$CLOSE, SHORT, LONG)
dea <- calculate_DEA(dif, MID)
macd <- calculate_MACD(dif, dea)# 将计算得到的指标合并到原始数据中
stock_data <- cbind(stock_data,DIF = round(dif, 2),DEA = round(dea, 2),MACD = round(macd, 2)
)# 根据日期字段倒序排列并展示数据
stock_data <-stock_data[order(stock_data$DATE, decreasing = TRUE), ]
View(stock_data)

介绍代码

EMA函数
# 定义函数计算指数移动平均线(Exponential Moving Average,EMA)
# 参数:
#   x: 输入数据
#   n: 平滑因子
# 返回值:
#   指数移动平均线
EMA <- function(x, n) {ema <- numeric(length(x))ema[1] <- x[1]alpha <- 2 / (n + 1)for (i in 2:length(x)) {ema[i] <- alpha * x[i] + (1 - alpha) * ema[i - 1]}return(ema)
}
  1. EMA <- function(x, n) {: 这一行定义了一个函数 EMA,接受两个参数 xn,其中 x 是一个数值型向量,包含要计算EMA的数据,n 是一个整数,代表指数平滑的窗口大小。

  2. ema <- numeric(length(x)): 这一行创建了一个名为 ema 的空数值型向量,其长度与输入向量 x 的长度相同,用来存储计算得到的 EMA。

  3. ema[1] <- x[1]: 这一行将 ema 向量的第一个元素设置为输入向量 x 的第一个元素,作为初始值。

  4. alpha <- 2 / (n + 1): 这一行计算了一个常数 alpha,用于指数平滑计算中的权重。alpha 的计算公式为 2 / (n + 1),其中 n 是平滑窗口大小。

  5. for (i in 2:length(x)) {: 这一行开启了一个循环,从输入向量 x 的第二个元素开始,直到最后一个元素。

  6. ema[i] <- alpha * x[i] + (1 - alpha) * ema[i - 1]: 这一行计算了当前时刻 i 的 EMA,根据指数平滑的公式:新EMA值等于当前值乘以权重 alpha 再加上上一个EMA值乘以权重 (1 - alpha)

  7. return(ema): 这一行返回计算得到的 EMA 向量。

calculate_DEA 函数
calculate_DEA <- function(dif, mid) {dea <- EMA(dif, mid)return(dea)
}
  1. calculate_DIF <- function(close, short, long) {: 这一行定义了一个函数 calculate_DIF,接受三个参数:close 是一个数值型向量,包含股价收盘价的数据;shortlong 是两个整数,分别代表短期和长期的指数平滑窗口大小。

  2. dif <- EMA(close, short) - EMA(close, long): 这一行计算了两个不同长度的指数移动平均线之间的差异值(DIF)。首先调用了之前定义的 EMA 函数来计算 close 向量的短期和长期EMA值,然后将短期EMA值减去长期EMA值得到差异值 dif

  3. return(dif): 这一行返回计算得到的差异值 dif

calculate_MACD 函数
calculate_MACD <- function(dif, dea) {macd <- (dif - dea) * 2return(macd)
}

这段代码定义了一个函数 calculate_MACD,用于计算移动平均收敛-发散指标(Moving Average Convergence Divergence,MACD)。下面是对每一行代码的解释:

  1. calculate_MACD <- function(dif, dea) {: 这一行定义了一个函数 calculate_MACD,接受两个参数:dif 是一个数值型向量,代表差异值;dea 也是一个数值型向量,代表差异值的指数移动平均线(DEA)。

  2. macd <- (dif - dea) * 2: 这一行计算了MACD值,首先从差异值 dif 中减去差异值的指数移动平均线 dea,然后将结果乘以2。

  3. return(macd): 这一行返回计算得到的MACD值。

运行结果

在这里插入图片描述

这篇关于R语言,实现MACD指标计算:股票技术分析的利器系列(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/786317

相关文章

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

Java中List转Map的几种具体实现方式和特点

《Java中List转Map的几种具体实现方式和特点》:本文主要介绍几种常用的List转Map的方式,包括使用for循环遍历、Java8StreamAPI、ApacheCommonsCollect... 目录前言1、使用for循环遍历:2、Java8 Stream API:3、Apache Commons

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端