运用R语言、Tushare对单支股票进行回归分析

2024-03-08 02:50

本文主要是介绍运用R语言、Tushare对单支股票进行回归分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、数据描述

(一)数据的获取

(二)数据的预处理及分析

二、初步回归分析

(一)模型及变量

(二)参数估计

(三)假设检验

1. 回归显著性检验

2. 回归系数的显著性检验

3. 回归子集的显著性检验

三、变量选择

(一)最优子集选择

(二)逐步回归

(三)最终模型

(四)假设检验

1. 回归显著性检验

2. 回归系数的显著性检验

(六)残差分析

四、多重共线性

(一)诊断

1. 相关系数

2. 方差膨胀因子(VIF)

3. 特征系统分析

(二)主成分回归

1. 主成分分析

2. 主成分回归

(三)岭回归

五、模型效果及结果分析

(一)训练集

(二)测试集


一、数据描述

(一)数据的获取

        本文选取2020年6月1日到2021年9月30日之间顺丰控股股票的相关数据作为训练集、2021年10月8日到2021年12月17日的顺丰控股股票的相关数据作为测试集,其中指标为交易日期(trade_date)、股票代码(ts_code)、开盘价(open)、最高价(high)、最低价(low)、收盘价(close)、前一日收盘价(pre_close)、涨跌额(change)、涨跌幅(pct_chg)、成交量(vol)、成交额(amount)及换手率(turnover_rate)。以上均通过tushare网站(个人ID:411335)的数据接口运用python获取:

import tushare as ts
import pandas as pdts.set_token('Your Token') # 输入个人Tushare接口
pro=ts.pro_api()df1 = ts.pro_bar(ts_code='002352.SZ', adj='qfq', start_date='20200601', end_date='20210930',factors=['tor'])
df1 = df1[::-1]
df1.to_csv("data_train.csv")df2 = ts.pro_bar(ts_code='002352.SZ', adj='qfq', start_date='20211008', end_date='20211217',factors=['tor'])
df2 = df2[::-1]
df2.to_csv("data_test.csv")

(二)数据的预处理及分析

        首先,本文对原始数据进行筛选,保留了研究所需数据,删除了多余及缺失数据。接着,由于本文所感兴趣的是前一日的数据对后一日股票价格的影响,因此将后一日的开盘价及收盘价添加进了数据集中。最后,由于解释变量的数据数量及差异较大,本文对其进行了标准化处理:

# 训练集
train.org = read.csv("data_train.csv")[,-1] 
train.org$trade_date = as.Date(as.character(train.org[,1]),format="%Y%m%d")library(dplyr)
train.need = dplyr::select(train.org, open:close, amount, turnover_rate) # 数据筛选train.Y = train.need$close[-1]
train.X = train.need[-dim(train.need)[1], ]
X.next_open = train.need$open[-1]train.data = cbind(train.X, next_open = X.next_open, next_close = train.Y) # 最终数据
train.scale = data.frame(scale(train.data)) # 标准化数据
head(train.scale)# 测试集
test.org = read.csv("data_test.csv")[,-1]
test.org$trade_date = as.Date(as.character(test.org[,1]),format="%Y%m%d")test.need = dplyr::select(test.org, open:close, amount, turnover_rate)test.Y = test.need$close[-1]
test.X = test.need[-dim(test.need)[1], ]
X.next_open = test.need$open[-1]test.data = cbind(test.X, next_open = X.next_open, next_close = test.Y)
test.scale = data.frame(scale(test.data))
head(test.scale)

        对训练集数据做初步描述性统计,以方便后续分析:

library(ggplot2)
library(ggthemes)# 后一日收盘价走势
p1 = ggplot(train.org) + geom_line(aes(x=trade_date, y=close), lwd=1, col="darkblue") + labs(x="Trade Date",y = "Close Price (RMB)") + theme_economist() + theme(axis.title = element_text(face = "bold"))
p1# 每日收益情况
p2 = train.org %>% mutate(bd=ifelse(pct_chg>=0, ">=0", "<0")) %>% ggplot(aes(x=bd)) + geom_bar(fill=c("green4", "red3"), width=0.3) + labs(x="Profit", y="Count")
p2# 每日涨跌额分布情况
p3 = ggplot(train.org) + geom_density(aes(x=change,colour=I("royalblue")), lwd=1)+labs(x="Difference",y = "Density")
p3

输出:

图1 后一日收盘价走势图

图2 每日收益情况

图3 每日涨跌额分布曲线 

        可以看到,训练集中的数据涨跌次数基本持平,且近似呈现中心分布。

二、初步回归分析

(一)模型及变量

        初步模型为:

这篇关于运用R语言、Tushare对单支股票进行回归分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785741

相关文章

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

QT进行CSV文件初始化与读写操作

《QT进行CSV文件初始化与读写操作》这篇文章主要为大家详细介绍了在QT环境中如何进行CSV文件的初始化、写入和读取操作,本文为大家整理了相关的操作的多种方法,希望对大家有所帮助... 目录前言一、CSV文件初始化二、CSV写入三、CSV读取四、QT 逐行读取csv文件五、Qt如何将数据保存成CSV文件前言

通过Spring层面进行事务回滚的实现

《通过Spring层面进行事务回滚的实现》本文主要介绍了通过Spring层面进行事务回滚的实现,包括声明式事务和编程式事务,具有一定的参考价值,感兴趣的可以了解一下... 目录声明式事务回滚:1. 基础注解配置2. 指定回滚异常类型3. ​不回滚特殊场景编程式事务回滚:1. ​使用 TransactionT

Java中使用Hutool进行AES加密解密的方法举例

《Java中使用Hutool进行AES加密解密的方法举例》AES是一种对称加密,所谓对称加密就是加密与解密使用的秘钥是一个,下面:本文主要介绍Java中使用Hutool进行AES加密解密的相关资料... 目录前言一、Hutool简介与引入1.1 Hutool简介1.2 引入Hutool二、AES加密解密基础