IJCAI23 - Continual Learning Tutorial

2024-03-08 01:44

本文主要是介绍IJCAI23 - Continual Learning Tutorial,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

如果你对这篇文章感兴趣,可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」,查看完整博客分类与对应链接。

本篇 Tutorial 主要介绍了 CL 中的一些基本概念以及一些过往的方法。


Problem Definition

Continual LearningIncremental learning 以及 Lifelong learning 属于同一概念, 其所关心的场景均为「如何在新数据持续到来的情况下更新模型?」;并且由于存储空间和隐私问题,流式数据通常不能被存储。

CL 的整体目标为最小化所有已见任务的期望损失,如下所示:

在这里插入图片描述
CL 又细分为三类( { Y t } \{\mathcal{Y}^t\} {Yt} 表示 t t t 时刻的类别标签集合, P ( Y t ) P(\mathcal{Y}^t) P(Yt) 表示类别分布, P ( X t ) P(\mathcal{X}^t) P(Xt) 表示输入数据分布):

  • Class-Incremental Learning (CIL): { Y t } ⊂ { Y t + 1 } , P ( Y t ) ≠ P ( Y t + 1 ) , P ( X t ) ≠ P ( X t + 1 ) \left\{\mathcal{Y}^t\right\} \subset\left\{\mathcal{Y}^{t+1}\right\},P\left(\mathcal{Y}^t\right) \neq P\left(\mathcal{Y}^{t+1}\right),P\left(\mathcal{X}^t\right) \neq P\left(\mathcal{X}^{t+1}\right) {Yt}{Yt+1},P(Yt)=P(Yt+1),P(Xt)=P(Xt+1)
  • Task-Incremental Learning (TIL): { Y t } ≠ { Y t + 1 } , P ( X t ) ≠ P ( X t + 1 ) \left\{\mathcal{Y}^t\right\} \neq\left\{\mathcal{Y}^{t+1}\right\},P\left(\mathcal{X}^t\right) \neq P\left(\mathcal{X}^{t+1}\right) {Yt}={Yt+1},P(Xt)=P(Xt+1),测试时任务 id ( t ) \text{id}(t) id(t) 已知
  • Domain-Incremental Learning (DIL): { Y t } = { Y t + 1 } , P ( Y t ) = P ( Y t + 1 ) , P ( X t ) ≠ P ( X t + 1 ) \left\{\mathcal{Y}^t\right\} =\left\{\mathcal{Y}^{t+1}\right\},P\left(\mathcal{Y}^t\right) =P\left(\mathcal{Y}^{t+1}\right),P\left(\mathcal{X}^t\right) \neq P\left(\mathcal{X}^{t+1}\right) {Yt}={Yt+1},P(Yt)=P(Yt+1),P(Xt)=P(Xt+1)

在这里插入图片描述

与其它相关领域的区别

Multi-task Learning:(1)同时拿到所有任务的数据;(2)离线训练
在这里插入图片描述
Transfer Learning:(1)只有两个阶段;(2)并且不关注第一阶段,即 Source 的性能
在这里插入图片描述
Meta-Learning:(1)离线训练;(2)不关心 meta-train 的性能
在这里插入图片描述


CL 的一些传统做法

具体方法分类如下:
在这里插入图片描述

Data-Centric Methods

核心思想:保存一部分先前数据,在面对新任务时,可以作为训练损失的正则项 (hosting the data to replay former knowledge when learning new, or exert regularization terms with former data)

保存一部分数据的过往方法:

  • [Welling ICML’09] 计算 Embedding 空间的类中心,选取离类中心近的样本。
  • [Rebuffi et al. CVPR’17] 每个类依次贪心选取样本,使得样本 Embedding 均值逼近类中心。
  • [Shin et al. NIPS’17] [Gao and Liu ICML’23] 使用生成式模型学习每个类的数据分布。

将先前数据作为新任务训练损失正则项的一些方法:

  • [Lopez-Paz and Ranzato NIPS’17] 训练时要求模型不仅在新任务上做好,在旧任务上也要做的比之前好;模型在新任务和旧任务上的损失梯度夹角为正。

一些可能的问题:

  • [Verwimp et al. ICCV’21] Data replay 可能会遭遇 overfitting.
  • [Wu NeurIPS’18] 生成式模型也会出现灾难性遗忘。

Model-Centric Methods

核心思想:调整网络结构,或者识别网络中的重要参数并限制其变化

  • [Kirkpatrick et al. PNAS’17] 训练新任务时,限制模型参数的变化,越重要的参数权重越高

Algorithm-Centric Methods

核心思想:设计一些训练机制避免旧模型的遗忘 (design training mechanisms to prevent the forgetting of old model)

知识蒸馏 (Knowledge Distillation) 的相关方法:

  • [Li et al. TPAMI’17] 将旧模型作为 Teacher,训练时模型不仅要做好当前任务,在过去任务上需要表现得和 Teacher 尽可能相近。

模型纠正 (Model Rectify) 的相关方法:

  • 例如「降低新类输出概率 Logit」和「降低最后一层新类的权重矩阵」。

Trends of CL

最后是 CL 近几年的整体发展趋势:
请添加图片描述


参考资料

  • IJCAI23 - Continual Learning Tutorial
  • PyCIL - A Python Toolbox for Class-Incremental Learning

这篇关于IJCAI23 - Continual Learning Tutorial的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785548

相关文章

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

Learning Memory-guided Normality for Anomaly Detection——学习记忆引导的常态异常检测

又是一篇在自编码器框架中研究使用记忆模块的论文,可以看做19年的iccv的论文的衍生,在我的博客中对19年iccv这篇论文也做了简单介绍。韩国人写的,应该是吧,这名字听起来就像。 摘要abstract 我们解决异常检测的问题,即检测视频序列中的异常事件。基于卷积神经网络的异常检测方法通常利用代理任务(如重建输入视频帧)来学习描述正常情况的模型,而在训练时看不到异常样本,并在测试时使用重建误

Learning Temporal Regularity in Video Sequences——视频序列的时间规则性学习

Learning Temporal Regularity in Video Sequences CVPR2016 无监督视频异常事件检测早期工作 摘要 由于对“有意义”的定义不明确以及场景混乱,因此在较长的视频序列中感知有意义的活动是一个具有挑战性的问题。我们通过在非常有限的监督下使用多种来源学习常规运动模式的生成模型(称为规律性)来解决此问题。体来说,我们提出了两种基于自动编码器的方法,以

COD论文笔记 Adaptive Guidance Learning for Camouflaged Object Detection

论文的主要动机、现有方法的不足、拟解决的问题、主要贡献和创新点如下: 动机: 论文的核心动机是解决伪装目标检测(COD)中的挑战性任务。伪装目标检测旨在识别和分割那些在视觉上与周围环境高度相似的目标,这对于计算机视觉来说是非常困难的任务。尽管深度学习方法在该领域取得了一定进展,但现有方法仍面临有效分离目标和背景的难题,尤其是在伪装目标与背景特征高度相似的情况下。 现有方法的不足之处: 过于

One-Shot Imitation Learning

发表时间:NIPS2017 论文链接:https://readpaper.com/pdf-annotate/note?pdfId=4557560538297540609&noteId=2424799047081637376 作者单位:Berkeley AI Research Lab, Work done while at OpenAI Yan Duan†§ , Marcin Andrychow

Introduction to Deep Learning with PyTorch

1、Introduction to PyTorch, a Deep Learning Library 1.1、Importing PyTorch and related packages import torch# supports:## image data with torchvision## audio data with torchaudio## text data with t

《Learning To Count Everything》CVPR2021

摘要 论文提出了一种新的方法来解决视觉计数问题,即在给定类别中仅有少量标注实例的情况下,对任何类别的对象进行计数。将计数问题视为一个少样本回归任务,并提出了一种新颖的方法,该方法通过查询图像和查询图像中的少量示例对象来预测图像中所有感兴趣对象的存在密度图。此外,还提出了一种新颖的适应策略,使网络能够在测试时仅使用新类别中的少量示例对象来适应任何新的视觉类别。为了支持这一任务,作者还引入了一个包含

One-Shot Imitation Learning with Invariance Matching for Robotic Manipulation

发表时间:5 Jun 2024 论文链接:https://readpaper.com/pdf-annotate/note?pdfId=2408639872513958656&noteId=2408640378699078912 作者单位:Rutgers University Motivation:学习一个通用的policy,可以执行一组不同的操作任务,是机器人技术中一个有前途的新方向。然而,

MaPLe(论文解读): Multi-modal Prompt Learning

Comment: Accepted at CVPR2023 摘要 预训练的视觉语言模型(VL-PTMs)(比如CLIP)在下游任务中已经表现出不错的泛化能力。但是它们对输入文本提示模板的选择很敏感,需要仔细选择提示模板才能表现良好。 受到NLP领域的启发,最近的CLIP的自适应性方法开始学习提示作为文本输入,来微调CLIP以适应下游任务。本文能注意到,在CLIP的单个分支(语言或图像分支)中