模型部署——rknn-toolkit-lite2部署RKNN模型到开发板上(python版)

2024-03-07 20:36

本文主要是介绍模型部署——rknn-toolkit-lite2部署RKNN模型到开发板上(python版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在RKNN模型部署前,需要注意以下几点:

(1)硬件平台兼容性:
确保你的开发板与 RKNN Toolkit Lite2 兼容。目前,RKNN Toolkit Lite2 支持 Rockchip RK3566、RK3588、RK3399 等平台。
确认开发板的 NPU 型号和版本与 RKNN 模型的 NPU 算子兼容。

(2)模型转换:
使用 RKNN Toolkit 或 RKNNConverter 工具将 PyTorch、TensorFlow 等框架模型转换为 RKNN 模型。
转换时,需要指定目标硬件平台和 NPU 型号。
确保模型转换成功,并生成相应的 RKNN 模型文件。
关于模型转换的教程,参考我另外一篇博文:Pytorch转RKNN模型

(3)部署环境:
在开发板上安装 RKNN Runtime 和相关依赖库。
确认开发板的系统版本和编译环境与 RKNN Toolkit Lite2 兼容。

(4)模型加载:
使用 RKNN Toolkit Lite2 提供的 API 加载 RKNN 模型。
需指定模型文件路径以及其他参数。

(5)模型推理:
使用 RKNN Toolkit Lite2 提供的 API 进行模型推理。
需提供输入数据和相关参数。

(6)性能优化:
可以使用 RKNN Toolkit Lite2 提供的性能分析工具分析模型性能。
根据分析结果,可以对模型进行优化,以提高推理速度和降低功耗。

目录

  • 一、源码包准备
  • 二、环境准备
    • 2.1 安装Miniconda
    • 2.2 新建虚拟环境
    • 2.3 安装rknn_toolkit_lite2包
    • 2.4 安装OpenCV包
  • 三、推理
    • 3.1 代码
    • 3.2 开发板推理结果
  • 四、总结

一、源码包准备

本配套源码包的获取方式为文章末扫码到公众号「视觉研坊」中回复关键字:RKNN Lite2开发板部署。获取下载链接。

下载解压后的样子如下:

在这里插入图片描述

二、环境准备

先在开发板上运行rknn_server,通过adb连通开发板,在开发板系统上安装python编译环境。

2.1 安装Miniconda

在开发板系统上安装Miniconda的详细教程,见我另外一篇博客:Miniconda安装

2.2 新建虚拟环境

上一步Miniconda安装好后,在此基础上安装一个新的虚拟环境,如下,:
查看已有虚拟环境命令为:

conda env list

创建新虚拟环境命令为:

conda create -n name python=3.9

在这里插入图片描述
在这里插入图片描述

上面步骤创建好后激活虚拟环境,如下:

激活命令为:

conda activate name

在这里插入图片描述

2.3 安装rknn_toolkit_lite2包

rknn_toolkit_lite2包的轮子文件,在我提供源码包中的packages文件夹中,如下:

在这里插入图片描述

在激活的虚拟环境中,进入到存放轮子文件目录下,使用下面命令安装:

pip install rknn_toolkit_lite2-1.6.0-cp39-cp39-linux_aarch64.whl -i https://pypi.mirrors.ustc.edu.cn/simple/

在这里插入图片描述

2.4 安装OpenCV包

在同样的虚拟环境下,使用下面命令安装opencv:

pip install opencv-python -i https://pypi.mirrors.ustc.edu.cn/simple/

在这里插入图片描述

三、推理

上面环境都准备好后,在终端通过命令进入到源码包目录下,运行下面命令即可在开发板上推理RKNN模型。

python rknntoolkit_lite2_inference.py

在这里插入图片描述

3.1 代码

此代码对应源码包中的rknntoolkit_lite2_inference.py脚本。

from rknnlite.api import RKNNLite
import cv2
import numpy as npdef show_outputs(output):output_sorted = sorted(output,reverse = True)top5_str = '\n----------top5-----------\n'for i in range(5):value = output_sorted[i]index = np.where(output == value)for j in range(len(index)):if (i + j) >= 5:breakif value > 0:top1 = "{}:{}\n".format(index[j],value)else:top1 = "-1:0.0\n"top5_str += top1print(top5_str)def show_perfs(perfs):perfs = "perfs:{}\n".format(perfs)print(perfs)def softmax(x):return np.exp(x)/sum(np.exp(x))if __name__ == "__main__":rknn = RKNNLite()# 使用load_rknn接口直接加载RKNN模型rknn.load_rknn(path="resnet18.rknn")# 调用init_runtime接口初始化运行时环境rknn.init_runtime(core_mask = 0,  # core_mask表示NPU的调度模式,设置为0时表示自由调度,设置为1,2,4时分别表示调度某个单核心,设置为3时表示同时调度0和1两个核心,设置为7时表示1,2,4三个核心同时调度# targt = "rk3588")# 使用Opencv读取图片img = cv2.imread("space_shuttle_224.jpg")img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)# 调用inference接口进行推理测试output = rknn.inference(inputs=[img],data_format=None)show_outputs(softmax(np.array(output[0][0])))  # 根据概率排名,打印出前5名的概率rknn.release()

3.2 开发板推理结果

运行上面脚本,输出推理结果如下:

在这里插入图片描述

打开源码包中的图片和imagenet1000标签.txt文件对照查看,推理预测的结果与标签文件对应的类名一致,说明开发板推理结果正确,如下:

在这里插入图片描述

四、总结

以上就是rknn-toolkit-lite2部署RKNN模型到开发板上的详细过程,CAPI开发板部署见下一期博文。

总结不易,多多支持,谢谢!

感谢您阅读到最后!关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!

这篇关于模型部署——rknn-toolkit-lite2部署RKNN模型到开发板上(python版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/784746

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1