scikit-learn 支持向量机实现乳腺癌检测

2024-03-07 07:58

本文主要是介绍scikit-learn 支持向量机实现乳腺癌检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随书代码,阅读笔记。

  • 载入数据并准备测试机和训练集
# 载入数据
from sklearn.datasets import load_breast_cancercancer = load_breast_cancer()
X = cancer.data
y = cancer.target
print('data shape: {0}; no. positive: {1}; no. negative: {2}'.format(X.shape, y[y==1].shape[0], y[y==0].shape[0]))# 准备训练集和测试集
from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
  • 使用高斯核函数
from sklearn.svm import SVCclf = SVC(C=1.0, kernel='rbf', gamma=0.1)
clf.fit(X_train, y_train)
train_score = clf.score(X_train, y_train)
test_score = clf.score(X_test, y_test)
print('train score: {0}; test score: {1}'.format(train_score, test_score))#output:train score: 1.0; test score: 0.526315789474

从代码中可以看出,在训练集上得分很高,但是在测试集上表现很差。

很明显,过拟合了。因为我们的数据集很小,高斯核函数太复杂,容易造成过拟合。

我们尝试着修改高斯核函数的参数,看看效果如何:

from common.utils import plot_param_curve
from sklearn.model_selection import GridSearchCVgammas = np.linspace(0, 0.0003, 30)
param_grid = {'gamma': gammas}
clf = GridSearchCV(SVC(), param_grid, cv=5) # cv:交叉验证参数,默认是None, 使用三折交叉验证,指定 fold数量, default = 3
clf.fit(X, y)
print("best param: {0}\nbest score: {1}".format(clf.best_params_,clf.best_score_))plt.figure(figsize=(10, 4), dpi=144)
plot_param_curve(plt, gammas, clf.cv_results_, xlabel='gamma');#output:
#
# best param: {'gamma': 0.00011379310344827585}
# best score: 0.936731107206

使用自动搜索出来的参数gamma = 0.0001重新训练并验证,得到如下数据:

train score: 0.9516483516483516; test score: 0.9385964912280702

可以看到,参数设置的不同,对整个结果影响很大

  • 图形化learning curve
import time
from common.utils import plot_learning_curve
from sklearn.model_selection import ShuffleSplitcv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
title = 'Learning Curves for Gaussian Kernel'start = time.clock()
plt.figure(figsize=(10, 4), dpi=144)
plot_learning_curve(plt, SVC(C=1.0, kernel='rbf', gamma=0.01),title, X, y, ylim=(0.5, 1.01), cv=cv)print('elaspe: {0:.6f}'.format(time.clock()-start))
  • 多项式核函数
from sklearn.svm import SVCclf = SVC(C=1.0, kernel='poly', degree=2)
clf.fit(X_train, y_train)
train_score = clf.score(X_train, y_train)
test_score = clf.score(X_test, y_test)
print('train score: {0}; test score: {1}'.format(train_score, test_score))#output:train score: 0.978021978021978; test score: 0.9473684210526315

多项式不同的阶数对分类结果的影响

import time
from common.utils import plot_learning_curve
from sklearn.model_selection import ShuffleSplitcv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
title = 'Learning Curves with degree={0}'
degrees = [1, 2]start = time.clock()
plt.figure(figsize=(12, 4), dpi=144)
for i in range(len(degrees)):plt.subplot(1, len(degrees), i + 1)plot_learning_curve(plt, SVC(C=1.0, kernel='poly', degree=degrees[i]),title.format(degrees[i]), X, y, ylim=(0.8, 1.01), cv=cv, n_jobs=4)print('elaspe: {0:.6f}'.format(time.clock()-start))

 

  • 多项式 LinearSVC
from sklearn.svm import LinearSVC
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline import Pipelinedef create_model(degree=2, **kwarg):polynomial_features = PolynomialFeatures(degree=degree,include_bias=False)scaler = MinMaxScaler()linear_svc = LinearSVC(**kwarg)pipeline = Pipeline([("polynomial_features", polynomial_features),("scaler", scaler),("linear_svc", linear_svc)])return pipelineclf = create_model(penalty='l1', dual=False)
clf.fit(X_train, y_train)
train_score = clf.score(X_train, y_train)
test_score = clf.score(X_test, y_test)
print('train score: {0}; test score: {1}'.format(train_score, test_score))#output:train score: 0.984615384615; test score: 0.991228070175

show出来learning curve

import time
from common.utils import plot_learning_curve
from sklearn.model_selection import ShuffleSplitcv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
title = 'Learning Curves for LinearSVC with Degree={0}'
degrees = [1, 2]start = time.clock()
plt.figure(figsize=(12, 4), dpi=144)
for i in range(len(degrees)):plt.subplot(1, len(degrees), i + 1)plot_learning_curve(plt, create_model(penalty='l1', dual=False, degree=degrees[i]),title.format(degrees[i]), X, y, ylim=(0.8, 1.01), cv=cv)print('elaspe: {0:.6f}'.format(time.clock()-start))

 

扩展阅读:

如何选择核函数?

如何调整参数?

SVC, linearSVC, NuSVC 都有什么区别?

这篇关于scikit-learn 支持向量机实现乳腺癌检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782853

相关文章

Qt实现对Word网页的读取功能

《Qt实现对Word网页的读取功能》文章介绍了几种在Qt中实现Word文档(.docx/.doc)读写功能的方法,包括基于QAxObject的COM接口调用、DOCX模板替换及跨平台解决方案,重点讨论... 目录1. 核心实现方式2. 基于QAxObject的COM接口调用(Windows专用)2.1 环境

MySQL查看表的历史SQL的几种实现方法

《MySQL查看表的历史SQL的几种实现方法》:本文主要介绍多种查看MySQL表历史SQL的方法,包括通用查询日志、慢查询日志、performance_schema、binlog、第三方工具等,并... 目录mysql 查看某张表的历史SQL1.查看MySQL通用查询日志(需提前开启)2.查看慢查询日志3.

Java实现字符串大小写转换的常用方法

《Java实现字符串大小写转换的常用方法》在Java中,字符串大小写转换是文本处理的核心操作之一,Java提供了多种灵活的方式来实现大小写转换,适用于不同场景和需求,本文将全面解析大小写转换的各种方法... 目录前言核心转换方法1.String类的基础方法2. 考虑区域设置的转换3. 字符级别的转换高级转换

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA

MyBatis-Plus逻辑删除实现过程

《MyBatis-Plus逻辑删除实现过程》本文介绍了MyBatis-Plus如何实现逻辑删除功能,包括自动填充字段、配置与实现步骤、常见应用场景,并展示了如何使用remove方法进行逻辑删除,逻辑删... 目录1. 逻辑删除的必要性编程1.1 逻辑删除的定义1.2 逻辑删php除的优点1.3 适用场景2.

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局