b站小土堆pytorch学习记录—— P18-P22 神经网络+小实战

2024-03-06 22:12

本文主要是介绍b站小土堆pytorch学习记录—— P18-P22 神经网络+小实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、卷积层 P18
    • 1.卷积操作
    • 2.代码
  • 二、池化层 P19
    • 1.池化层简单介绍
    • 2.代码
      • (1)池化操作中数字的变化
      • (2)池化操作对图片的影响
  • 三、非线性激活 P20
    • 1.简要介绍
    • 2.代码
  • 四、线性层及其他层介绍 P21
    • 1.线性层
    • 2.代码
  • 五、搭建小实战和Sequential的使用 P22
    • 1.要实现的模型
    • 2.代码

理解神经网络:

卷积神经网络(CNN)详细介绍及其原理详解

CNN笔记:通俗理解卷积神经网络

一文让你彻底了解卷积神经网络

一、卷积层 P18

1.卷积操作

推荐几个高赞博客:

卷积最容易理解的解释
卷积神经网络(CNN)详细介绍及其原理详解
还有pytorch官网的动态图:
pytorch卷积

具体而言,假设有一个3X3的灰度图像矩阵:

[1, 1, 1]
[0, 0, 0]
[1, 1, 1]

我们使用一个称为边缘检测的卷积核(滤波器):

[-1, -1, -1]
[-1,  8, -1]
[-1, -1, -1]

接下来,我们将对这个3x3图像矩阵应用卷积操作。

步骤如下:

(1)将3x3的卷积核与图像的左上角3x3区域进行逐元素相乘,并将结果相加,得到新的像素值。
(2)滑动卷积核到下一个位置,再次进行相乘相加操作,得到另一个像素值。
(3)重复此过程直到覆盖整个图像。
应用以上步骤后,我们可以得到一个新的图像矩阵,其中包含了经过边缘检测卷积核处理后的结果。这种操作有助于检测图像中的边缘和轮廓。

具体计算如下:

第一步,将卷积核与图像的左上角3x3区域进行逐元素相乘,并将结果相加,得到新的像素值:

1*(-1) + 1*(-1) + 1*(-1) +
0*(-1) + 0*8 + 0*(-1) +
1*(-1) + 1*(-1) + 1*(-1) = -3

第二步,滑动卷积核到下一个位置,再次进行相乘相加操作,得到另一个像素值:

1*(-1) + 1*(-1) + 0*(-1) +
0*(-1) + 0*8 + 1*(-1) +
1*(-1) + 1*(-1) + 0*(-1) = -5

以此类推,重复步骤直到覆盖整个图像。在这个例子中,我们得到了一个2x2的新图像矩阵,其像素值为-3和-5。

所以,经过边缘检测卷积核处理后的结果是:

[-3, -5]
[ 0,  0]

2.代码

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter# 下载CIFAR10数据集并准备数据加载器
dataset = torchvision.datasets.CIFAR10("./dataset2", train=False, transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=64)# 定义一个简单的神经网络模型
class Guodong(nn.Module):def __init__(self):super(Guodong, self).__init__()# 定义一个卷积层self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)def forward(self, x):x = self.conv1(x)return xguodong = Guodong()
print(guodong)# 初始化TensorBoard的SummaryWriter
writer = SummaryWriter("logs")
step = 0# 遍历数据加载器,处理数据并将结果写入TensorBoard
for data in dataloader:imgs, target = dataprint(imgs.shape)  # 打印输入图片的形状output = guodong(imgs)  # 将输入图片传入神经网络模型得到输出print(output.shape)  # 打印输出的形状writer.add_images("input", imgs, step)  # 将输入图片写入TensorBoardoutput = torch.reshape(output, (-1, 3, 30, 30))  # 调整输出的形状以便写入TensorBoardwriter.add_images("output", output, step)  # 将输出图片写入TensorBoardstep = step + 1  # 更新步数

程序运行结果:

在这里插入图片描述

打开tensorboard后,结果如下:

在这里插入图片描述

二、池化层 P19

1.池化层简单介绍

池化层详细介绍

池化层(Pooling Layer)是深度学习中常用的一种层,通常用于减少特征图的空间尺寸,降低计算复杂度,并且有助于防止过拟合。池化层在卷积神经网络(CNN)中被广泛应用。

池化层的作用是通过对输入数据进行池化操作来减少特征图的尺寸,从而减少网络参数和计算量。池化操作通常在每个独立的特征图上进行,它使用一个固定大小的窗口在特征图上滑动,并在窗口内部执行一个汇聚运算(如最大池化、平均池化等)来得到一个汇聚后的值作为输出。

常见的池化操作:

最大池化(Max Pooling):在池化窗口内取最大值作为汇聚后的值。
平均池化(Average Pooling):在池化窗口内取平均值作为汇聚后的值。
全局平均池化(Global Average Pooling):对整个特征图进行平均池化,将每个通道的特征图转换为一个标量值。

池化层的主要优点:

减少特征图的维度,降低计算复杂度。
增加平移不变性,提高模型的鲁棒性。
减少过拟合,通过减少特征图维度,可以减少模型参数的数量。

2.代码

(1)池化操作中数字的变化

import torch
from torch import nn
from torch.nn import MaxPool2d# 创建输入张量
input = torch.tensor([[1, 2, 0, 3, 1],[0, 1, 2, 3, 1],[1, 2, 1, 0, 0],[5, 2, 3, 1, 1],[2, 1, 0, 1, 1]], dtype=torch.float32)# 将输入张量reshape为(batch_size, channels, height, width)
input = torch.reshape(input, (-1, 1, 5, 5))# 定义第一个神经网络模型Guodong1,使用MaxPool2d进行最大池化操作,ceil_mode=True
class Guodong1(nn.Module):def __init__(self):super(Guodong1, self).__init__()self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)  # 定义最大池化层,kernel_size为3,启用ceil_modedef forward(self, input):output = self.maxpool1(input)return output# 创建Guodong1模型实例并进行前向传播
guodong1 = Guodong1()
output1 = guodong1(input)
print("Output of Guodong1 with ceil_mode=True:")
print(output1)# 定义第二个神经网络模型Guodong2,使用MaxPool2d进行最大池化操作,ceil_mode=False
class Guodong2(nn.Module):def __init__(self):super(Guodong2, self).__init__()self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=False)  # 定义最大池化层,kernel_size为3,不启用ceil_modedef forward(self, input):output = self.maxpool1(input)return output# 创建Guodong2模型实例并进行前向传播
guodong2 = Guodong2()
output2 = guodong2(input)
print("\nOutput of Guodong2 with ceil_mode=False:")
print(output2)

运行结果:

在这里插入图片描述

(2)池化操作对图片的影响

from torch import nn
import torchvision
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter# 加载CIFAR10数据集
dataset = torchvision.datasets.CIFAR10("./dataset1", train=False, transform=torchvision.transforms.ToTensor(), download=True)# 创建数据加载器
dataloader = DataLoader(dataset, batch_size=64)# 定义神经网络模型Guodong,使用MaxPool2d进行最大池化操作,ceil_mode=True
class Guodong(nn.Module):def __init__(self):super(Guodong, self).__init__()self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)  # 定义最大池化层,kernel_size为3,启用ceil_modedef forward(self, input):output = self.maxpool1(input)return outputguodong = Guodong()# 创建TensorBoard的SummaryWriter实例
writer = SummaryWriter("./logs_maxpool")
step = 0# 遍历数据加载器,将输入图像和模型输出图像添加到TensorBoard中
for data in dataloader:imgs, target = datawriter.add_images("input", imgs, step)  # 将输入图像添加到TensorBoardoutput = guodong(imgs)  # 通过模型前向传播得到输出writer.add_images("output", output, step)  # 将模型输出的图像添加到TensorBoardstep = step + 1writer.close()  # 关闭SummaryWriter

运行结果:

在这里插入图片描述
可以看到,最后的结果就像给图片打了 “马赛克”

三、非线性激活 P20

1.简要介绍

非线性激活函数是神经网络中用于引入非线性特性的函数。在神经网络中,每个神经元除了具有权重和偏置之外,还需要一个激活函数来引入非线性变换,从而使神经网络能够学习复杂的模式和关系。

在深度学习中,使用非线性激活函数的主要原因是为了让神经网络具备学习和表示更加复杂的函数的能力,从而提高模型的表达能力。如果没有非线性激活函数,多层神经网络就会退化为单层网络,无法表达复杂的非线性关系,限制了神经网络的表达能力和学习能力。

常见的非线性激活函数:

ReLU(Rectified Linear Unit):ReLU函数定义为f(x) = max(0, x),即将小于等于0的输入映射为0,大于0的输入保持不变。ReLU函数简单且计算高效,在实际应用中被广泛使用。

Sigmoid函数:Sigmoid函数定义为f(x) = 1 / (1 + exp(-x)),它将输入值映射到一个取值范围在[0, 1]之间的输出。Sigmoid函数常用于二分类问题或者需要将输出限制在一定范围内的任务。

Tanh函数:Tanh函数定义为f(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x)),它将输入值映射到一个取值范围在[-1, 1]之间的输出。Tanh函数在某些情况下比Sigmoid函数更适合使用,尤其是在中心化数据和对称性数据上。

Leaky ReLU:Leaky ReLU函数是对ReLU函数的改进,当输入小于0时,引入一个小的斜率来避免神经元“死亡”的问题。Leaky ReLU函数定义为f(x) = max(ax, x),其中a是一个小的正数。

ELU(Exponential Linear Unit):ELU函数在负数区域对输入进行指数级衰减,而在正数区域保持线性增长。ELU函数定义为f(x) = max(ax, x)(x >= 0)和f(x) = a * (exp(x) - 1)(x < 0),其中a是一个小的正数。

Softmax函数:Softmax函数常用于多分类问题中,将一组实数值映射到概率分布上,使得所有输出的总和等于1。Softmax函数定义为f(x_i) = exp(x_i) / sum(exp(x_j))。

2.代码

import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter# 创建输入张量并reshape为(batch_size, channels, height, width)
input = torch.tensor([[1, 0.5],[-1, 3]])
input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape)# 加载CIFAR10数据集
dataset = torchvision.datasets.CIFAR10("./dataset1", train=False, download=True, transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64)# 定义神经网络模型Guodong,包含ReLU和Sigmoid激活函数
class Guodong(nn.Module):def __init__(self):super(Guodong, self).__init__()self.relu1 = ReLU()  # 定义ReLU激活函数self.sigmoid1 = Sigmoid()  # 定义Sigmoid激活函数def forward(self, input):output = self.sigmoid1(input)  # 将输入数据经过Sigmoid激活函数得到输出return outputguodong = Guodong()
output = guodong(input)
print(output)# 使用SummaryWriter创建TensorBoard日志
step = 0
writer = SummaryWriter("logs")
for data in dataloader:imgs, target = datawriter.add_images("input", imgs, step)  # 将输入图像添加到TensorBoardoutput = guodong(imgs)  # 通过模型前向传播得到输出writer.add_images("output", output, step)  # 将模型输出的图像添加到TensorBoardstep += 1writer.close()  # 关闭SummaryWriter

代码运行结果:

在这里插入图片描述

四、线性层及其他层介绍 P21

1.线性层

在这里插入图片描述

2.代码

import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader# 下载并加载 CIFAR10 数据集
dataset = torchvision.datasets.CIFAR10("./dataset1", train=False, transform=torchvision.transforms.ToTensor(), download=True)# 创建数据加载器
dataloader = DataLoader(dataset, batch_size=64)# 定义自定义模型 Guodong
class Guodong(nn.Module):def __init__(self):super(Guodong, self).__init__()self.linear1 = Linear(196608, 10)  # 线性层,将输入维度为 196608 转换为输出维度为 10def forward(self, input):output = self.linear1(input)return output# 创建 Guodong 模型的实例
guodong = Guodong()# 遍历数据加载器
for data in dataloader:imgs, target = data# 打印图像张量的形状print(imgs.shape)# 将图像展平为一维向量output = torch.flatten(imgs)print(output.shape)# 将展平后的向量输入到 Guodong 模型中进行前向传播output = guodong(output)print(output.shape)

五、搭建小实战和Sequential的使用 P22

1.要实现的模型

CIFAR10 结构:
在这里插入图片描述

2.代码

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriterclass Guodong(nn.Module):def __init__(self):super(Guodong,self).__init__()self.module1 = Sequential(Conv2d(3, 32, 5, padding=2),MaxPool2d(2),Conv2d(32, 32, 5, padding=2),MaxPool2d(2),Conv2d(32, 64, 5, padding=2),MaxPool2d(2),Flatten(),Linear(1024, 64),Linear(64, 10))def forward(self,input):output = self.module1(input)return outputguodong = Guodong()input = torch.ones((64, 3, 32, 32))
print(input.shape)
output = guodong(input)
print(output.shape)writer = SummaryWriter("../seq_logs")
writer.add_graph(guodong, input)writer.close()

个人运行在tensorboard中显示异常,如下图,目前还不知道具体原因。
如果有大佬知道,可以在评论区指导

pytorch打不开

这篇关于b站小土堆pytorch学习记录—— P18-P22 神经网络+小实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/781526

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}