神经网络算法——反向传播 Back Propagation

2024-03-06 18:12

本文主要是介绍神经网络算法——反向传播 Back Propagation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

前言

1、反向传播的本质

(1)前向传播(Forward Propagation)

(2)反向传播(Back Propagation)

2、反向传播的原理

(1)链式法则(Chain Rule)

(2)偏导数

3、反向传播的案例:简单神经网络

(1)网络结构

(2)前向传播

(3)损失计算

(4)反向传播

(5)参数更新

(6)迭代

重复步骤 2-5,直到网络收敛或达到预设的迭代次数。


前言

本文将从反向传播的本质、反向传播的原理、反向传播的案例三个方面,详细介绍反向传播(Back Propagation)

反向传播


1、反向传播的本质

(1)前向传播(Forward Propagation)

前向传播是神经网络通过层级结构和参数,将输入数据逐步转换为预测结果的过程,实现输入与输出之间的复杂映射。

前向传播

  • 输入层:

        输入层接收训练集中的样本数据。

        每个样本数据包含多个特征,这些特征被传递给输入层的神经元。

        通常,还会添加一个偏置单元来辅助计算。

  • 隐藏层:

        隐藏层的每个神经元接收来自输入层神经元的信号。

        这些信号与对应的权重相乘后求和,并加上偏置。

        然后,通过激活函数(如sigmoid)处理这个求和结果,得到隐藏层的输出。

  • 输出层:

        输出层从隐藏层接收信号,并进行类似的加权求和与偏置操作。

        根据问题的类型,输出层可以直接输出这些值(回归问题),或者通过激活函数(如softmax)转换为概率分布(分类问题)。

(2)反向传播(Back Propagation)

反向传播算法利用链式法则,通过从输出层向输入层逐层计算误差梯度高效求解神经网络参数的偏导数,以实现网络参数的优化和损失函数的最小化。

反向传播

  • 利用链式法则:

        反向传播算法基于微积分中的链式法则,通过逐层计算梯度来求解神经网络中参数的偏导数。

  • 从输出层向输入层传播:

        算法从输出层开始,根据损失函数计算输出层的误差,然后将误差信息反向传播到隐藏层,逐层计算每个神经元的误差梯度。

  • 计算权重和偏置的梯度:

        利用计算得到的误差梯度,可以进一步计算每个权重和偏置参数对于损失函数的梯度

  • 参数更新:

        根据计算得到的梯度信息,使用梯度下降或其他优化算法来更新网络中的权重和偏置参数,以最小化损失函数。

2、反向传播的原理

(1)链式法则(Chain Rule)

链式法则是微积分中的一个基本定理,用于计算复合函数的导数。如果一个函数是由多个函数复合而成,那么该复合函数的导数可以通过各个简单函数导数的乘积来计算。

链式法则

  • 简化梯度计算:

        在神经网络中,损失函数通常是一个复合函数,由多个层的输出和激活函数组合而成。链式法则允许我们将这个复杂的复合函数的梯度计算分解为一系列简单的局部梯度计算,从而简化了梯度计算的过程。

  • 高效梯度计算:

        通过链式法则,我们可以从输出层开始,逐层向前计算每个参数的梯度,这种逐层计算的方式避免了重复计算,提高了梯度计算的效率。

  • 支持多层网络结构:

        链式法则不仅适用于简单的两层神经网络,还可以扩展到具有任意多层结构的深度神经网络。这使得我们能够训练和优化更加复杂的模型。

(2)偏导数

偏导数是多元函数中对单一变量求导的结果,它在神经网络反向传播中用于量化损失函数随参数变化的敏感度,从而指导参数优化。

偏导数

  • 偏导数的定义:

        偏导数是指在多元函数中,对其中一个变量求导,而将其余变量视为常数的导数。

        在神经网络中,偏导数用于量化损失函数相对于模型参数(如权重和偏置)的变化率。

  • 反向传播的目标:

        反向传播的目标是计算损失函数相对于每个参数的偏导数,以便使用优化算法(如梯度下降)来更新参数。

        这些偏导数构成了梯度,指导了参数更新的方向和幅度。

  • 计算过程:

        输出层偏导数:首先计算损失函数相对于输出层神经元输出的偏导数。这通常直接依赖于所选的损失函数。

        隐藏层偏导数:使用链式法则,将输出层的偏导数向后传播到隐藏层。对于隐藏层中的每个神经元,计算其输出相对于下一层神经元输入的偏导数,并与下一层传回的偏导数相乘,累积得到该神经元对损失函数的总偏导数。

        参数偏导数:在计算了输出层和隐藏层的偏导数之后,我们需要进一步计算损失函数相对于网络参数的偏导数,即权重和偏置的偏导数。

3、反向传播的案例:简单神经网络

(1)网络结构

  • 假设我们有一个简单的两层神经网络,结构如下:

        输入层:2个神经元(输入特征 x1 和 x2)

        隐藏层:2个神经元(带有激活函数 sigmoid)

        输出层:1个神经元(带有激活函数 sigmoid)

  • 网络的权重和偏置如下(这些值是随机初始化的,实际情况中会使用随机初始化):

        输入层到隐藏层的权重矩阵 W1:[0.5, 0.3], [0.2, 0.4]

        隐藏层到输出层的权重向量 W2:[0.6, 0.7]

        隐藏层的偏置向量 b1:[0.1, 0.2]

        输出层的偏置 b2:0.3

(2)前向传播

  • 给定输入 [0.5, 0.3],进行前向传播:

        隐藏层输入:[0.5*0.5 + 0.3*0.2 + 0.1, 0.5*0.3 + 0.3*0.4 + 0.2] = [0.31, 0.29]

        隐藏层输出(经过 sigmoid 激活函数):[sigmoid(0.31), sigmoid(0.29)] \approx [0.57, 0.57]

        输出层输入:0.6*0.57 + 0.7*0.57 + 0.3 = 0.71

        输出层输出(预测值,经过sigmoid激活函数):sigmoid(0.71) \approx 0.67

(3)损失计算

  • 假设真实标签是 0.8,使用均方误差(MSE)计算损失:

        损失 = (0.8-0.67)^2\approx 0.017

(4)反向传播

计算损失函数相对于网络参数的偏导数,并从输出层开始反向传播误差。

  • 输出层偏导数:

        损失函数对输出层输入的偏导数 (\delta 2):2 * (0.67 - 0.8) * sigmoid_derivative(0.71) \approx -0.05

Sigmoid函数的导数:sigmoid(x) * (1 - sigmoid(x))

  • 隐藏层偏导数:

        损失函数对隐藏层每个神经元输出的偏导数(\delta 1):[δ2 * 0.6 * sigmoid_derivative(0.31), δ2 * 0.7 * sigmoid_derivative(0.29)]

        计算后得到 δ1 ≈ [-0.01, -0.01](这里简化了计算,实际值可能有所不同)

  • 参数偏导数:

        对于权重 W2:[δ2 * 隐藏层输出1,δ2 * 隐藏层输出2] = [-0.03, -0.04]

        对于偏置 b2:δ2 = -0.05

        对于权重 W1 和 偏置 b1,需要更复杂的计算,因为它们影响到隐藏层的输出,进而影响到输出层的输入和最终的损失。这些偏导数依赖于 δ1 和输入层的值。

(5)参数更新

  • 使用梯度下降更新参数(学习率设为 0.1):

        更新 W2:w2 - 学习率 * 参数偏导数

        更新 b2:b2 - 学习率 * 参数偏导数

        同样地更新 W1 和 b1

(6)迭代

  • 重复步骤 2-5,直到网络收敛或达到预设的迭代次数。

参考:架构师带你玩转AI

这篇关于神经网络算法——反向传播 Back Propagation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/780902

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯: