基于Django的携程网Top热门景点数据可视化分析

2024-03-06 03:04

本文主要是介绍基于Django的携程网Top热门景点数据可视化分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言: 

今天给大家分享一个基于Django的携程网Top热门景点数据可视化分析项目,以下是该项目大大概内容

项目名称:基于Python(django)的携程Top热门景点数据可视化分析

涉及技术:Python,Django,Mysql,Web前端~

项目实现功能:用户登录注册,个人信息编辑,数据总览以及收藏,对爬取的数据进行可视化图标的展示等~

现在简单来分析一下这个小项目吧:

项目分析以及展示:

1:登录注册

这个功能基本上是每一个同学做设计网站的过程中必不可少的步骤啦,其实这个就是一个Form表单的Post提交验证,注册时获取输入框上的文本后,然后 models.objects.create(字段1=值1,字段2-值2......)就可以啦,登陆时只需获取输入框的内容验证其账号和密码是否存在于Mysql数据库即可,有的话则正常进入首页(下一页),没有的话课适当弹出提示信息

代码:

def login(request):if request.method == 'GET':return render(request, 'login.html')if request.method == 'POST':name = request.POST.get('name')password = request.POST.get('password')if User.objects.filter(username=name, password=password):user=User.objects.get(username=name, password=password)username=request.session['username'] = {'username':user.username,'avatar':str(user.avatar)}return redirect('index')else:msg = '信息错误!'return render(request, 'login.html', {"msg": msg})# 02用户注册
def register(request):if request.method == 'POST':name = request.POST.get('name')password = request.POST.get('password')phone = request.POST.get('phone')email = request.POST.get('email')avatar = request.FILES.get('avatar')stu = User.objects.filter(username=name)if stu:msg = '用户已存在!'return render(request, 'register.html', {"msg": msg})else:User.objects.create(username=name,password=password,phone=phone,email=email,avatar=avatar)msg = "注册成功!"return render(request, 'login.html', {"msg": msg})if request.method == 'GET':return render(request,'register.html')

2:个人信息编辑

只需使用数据库ORM的filter()字段为用户名等于我们登录时的名称即可,这里咱们知道获取我们登陆时的所昵称或者别的信息的,这里可以使用Session缓存 的方法来获取,具体怎么操作,我的上一篇博客已经介绍过啦,然后我们就顺利拿到我们用户的对象啦,然后正常映射到前端即可啦,修改个人信息也是Post方法,然后获取新的输入内容后,只需yourmodel.字段=获取的新数据 即可实现数据库原本内容的覆盖修改:

代码:

def selfInfo(request):username = request.session.get("username").get('username')useravatar = request.session.get("username").get('avatar')userInfo=User.objects.get(username=username)context={'username':username,'useravatar':useravatar,'userInfo':userInfo}return render(request,'selfInfo.html',context)

 

3:数据总览

这个内容就纯粹获取全部数据遍历展示啦:

4:数据收藏

这个是有一点难度的,实现点击收藏景点就可以把数据库传递显示在收藏页面(技术本质时,点击收藏按钮将该数据保存存储一个新的数据库里),我们根据ID来获取当前点击的对象,然后创建新的数据库,这里的数据库表的建立就会显得尤其重要啦,这里需要用到ForeignKey外键关联的细节啦,

这里比如我们收藏的数据存在数据库History里,然后该项目另外还有两个数据库(景点Places,用户User),我们看一下代码就知道啦:代码:

class History(models.Model):id = models.AutoField('id',primary_key=True)place = models.ForeignKey(Places,on_delete=models.CASCADE)user = models.ForeignKey(User,on_delete=models.CASCADE)count = models.IntegerField("点击次数",default=1)class Meta:db_table = "history"class Meta:db_table = 'History'verbose_name_plural = '收藏管理'

关联景点表使用户我们展示景点表中的每一个字段的具体信息,关联用户是因为我们使用缓存在辨别每一位不同的用户他们收藏的数据肯定也不一样,另外我们按照一个景点点击的次数多少来从在前端页面上到下排列。

5:可视化图表

可视化图表我是使用Echarts来呈现的,当然这个可视化展示的工具有很多大家可以自己决定使用哪一款(pyecharts,matplotlib,mapbr...),做过可视化的同学都知道,echarts他的可视化的数据信息有多种数据结构的比如单列表,列表里面嵌套字典,字典里面嵌套字典等,所以我们只需要将数据库里的数据拿出来处理成我们需要的样子即可啦,由于我这这个项目里的数据图表也不算少,所以我就只拿有两个图表来讲解举例:

比如下面的这种可视化的图,这个没有怎么设计到图表的内容:

效果图如下:

代码:

def index(request):users = User.objects.all()data = {}for u in users:if data.get(str(u.time),-1) == -1:data[str(u.time)] = 1else:data[str(u.time)] += 1result = []for k,v in data.items():result.append({'name':k,'value':v})timeFormat = time.localtime()year = timeFormat.tm_yearmonth = timeFormat.tm_monday = timeFormat.tm_mdaymonthList = ["January","February","March","April","May","June","July","August","September","October","November","December"]username = request.session.get("username").get('username')useravatar = request.session.get("username").get('avatar')newuserlist = User.objects.all()places=Places.objects.all()# 数据总量placeslength=len(places)# 用户总量userlength=len(User.objects.all())# 火热城市 h(例:)为北京,上海,深圳hotcitylist=[]hotcity=places.order_by('-hot')[0:3]for h in hotcity:hotcitylist.append(h.city)strres=''for h in hotcitylist:strres= strres+h+"~"hotcitylist=strres[:-1]# 最高级别"""levellist=[]for p in places:levellist.append(p.level[0])levellist=levellist.sort(reverse=True)levellistres=levellist[0] # 为最高等级5A"""levellistres='5A'# 评论量最高totalaccountres=places.order_by('-totalaccount')[0]totalaccountlistres=totalaccountres.totalaccount# 评分最高scoreres=places.order_by('-score')[0]scorelistres=scoreres.scoregoodaccountrate=places.order_by('-goodaccountrate')[0]goodaccountrate=goodaccountrate.goodaccountratecontext={'userTime':result,'year':year,'month':monthList[month-1],'day':day,'useravatar':useravatar,'username':username,'newuserlist':newuserlist,'placeslength':placeslength,'userlength':userlength,'hotcitylist':hotcitylist,'levellistres':levellistres,'totalaccountlistres':totalaccountlistres,'scorelistres':scorelistres,'places':places,'goodaccountrate':goodaccountrate}return render(request,'index.html',context)

获取数量:

# 数据总量
placeslength=len(places)
# 用户总量
userlength=len(User.objects.all())

Top最高的数据可以直接orderby(-字段)[0]即可,获取该字段的最高的一条数据然后获取该数据的该字段值,火热城市同理,按照hot热度排列取前3个对象数据,然后取出该3条数据的该字段值,然后可以利用字符串拼接的方法做城市之间的~连接展示。

接下来看这个图片:

这个图片是Echarts可视化工具的常见的饼图:他Echarts源数据是这样的(如下图:)

在data里面,是一个列表里面嵌套字典的形式,所以我们针对我们这个项目需要处理处理成[{北京:2},{上海:3},{杭州:5}......]既表达每个城市有多少景点,所有我们使用如下代码:

places = Places.objects.all();dict1={};result1=[];dict2={};result2=[];
for i in places:if dict1.get(i.city,-1)==-1:dict1[i.city]=1else:dict1[i.city]+=1
for k,v in dict1.items():result1.append({'value': v,"name":k})

这段代码首先从数据库中获取所有的 Places 对象,然后使用两个字典 dict1 和 dict2 和两个列表 result1 和 result2 进行处理。

  1. places = Places.objects.all();:通过 Places.objects.all() 获取数据库中所有的 Places 对象,并将其存储在 places 变量中。

  2. dict1 = {}; result1 = []; dict2 = {}; result2 = [];:初始化了两个空字典 dict1 和 dict2,以及两个空列表 result1 和 result2

  3. for i in places::遍历 places 中的每个 Places 对象。

  4. if dict1.get(i.city, -1) == -1::检查 dict1 中是否存在键为 i.city 的条目,如果不存在,返回 -1;存在则返回对应的值。

    • 如果返回值为 -1,说明 dict1 中没有 i.city 这个键,这时将 i.city 作为键,初始化其值为 1

    • 如果返回值不为 -1,说明 dict1 中已经存在 i.city 这个键,这时将对应的值加 1

  5. for k, v in dict1.items()::遍历 dict1 中的每一对键值对。

  6. result1.append({'value': v, "name": k}):将每个城市的数量 v 和城市名称 k 作为键值对添加到 result1 列表中,形成字典的列表结构。

综上所述,该代码的功能是统计数据库中每个城市出现的次数,并将结果以字典列表的形式存储在 result1 中。

其他类推(直接上效果图):

最后需要本项目的同学可以私信我或者下面加我微信~

这篇关于基于Django的携程网Top热门景点数据可视化分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/778683

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X