java数据结构与算法刷题-----LeetCode337. 打家劫舍 III

2024-03-05 14:20

本文主要是介绍java数据结构与算法刷题-----LeetCode337. 打家劫舍 III,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846

文章目录

    • 1. 动态规划+深度优先
      • 1.1 解题思路和细节
      • 2.2 代码实现

很多人觉得动态规划很难,但它就是固定套路而已。其实动态规划只不过是将多余的步骤,提前放到dp数组中(就是一个数组,只不过大家都叫它dp),达到空间换时间的效果。它仅仅只是一种优化思路,因此它目前的境地和线性代数一样----虚假的难。

  1. 想想线性代数,在国外留学的学生大多数不觉得线性代数难理解。但是中国的学生学习线性代数时,完全摸不着头脑,一上来就是行列式和矩阵,根本不知道这玩意是干嘛的。
  2. 线性代数从根本上是在空间上研究向量,抽象上研究线性关系的学科。人家国外的教科书都是第一讲就帮助大家理解研究向量和线性关系。
  3. 反观国内的教材,直接把行列式搞到第一章。搞的国内的学生在学习线性代数的时候,只会觉得一知半解,觉得麻烦,完全不知道这玩意学来干什么。当苦尽甘来终于理解线性代数时干什么的时候,发现人家国外的教材第一节就把这玩意讲清楚了。你只会大骂我们国内这些教材,什么狗东西(以上是自己学完线性代数后的吐槽,我们同学无一例外都这么觉得)。

而我想告诉你,动态规划和线性代数一样,我学完了才知道,它不过就是研究空间换时间,提前将固定的重复操作规划到dp数组中,而不用暴力求解,从而让效率极大提升。

  1. 但是网上教动态规划的兄弟们,你直接给一个动态方程是怎么回事?和线性代数,一上来就教行列式和矩阵一样,纯属恶心人。我差不多做了30多道动态规划题目,才理解,动态方程只是一个步骤而已,而这已经浪费我很长时间了,我每道题都一知半解不理解,过程及其痛苦。最后只能重新做。
  2. 动态规划,一定是优先考虑重复操作与dp数组之间的关系,搞清楚后,再提出动态方程。而你们前面步骤省略了不讲,一上来给个方程,不是纯属扯淡吗?
  3. 我推荐研究动态规划题目,按5个步骤,从上到下依次来分析
  1. DP数组及下标含义
  2. 递推公式
  3. dp数组初始化
  4. 数组遍历顺序(双重循环及以上时,才考虑)
  5. dp数组打印,分析思路是否正确(相当于做完题,检查一下)

在这里插入图片描述

1. 动态规划+深度优先

1.1 解题思路和细节

题目细节
  1. 想要偷到最多的钱,一定要遵循,适当取舍
  2. 比如上一个结点没偷,那么这个结点也不一定非要偷,因为你这个不偷,下一个就可以偷。
  3. 所以使用深度优先遍历,对于每个结点,都有两个选择,偷与不偷,而相邻的多个结点直接,不用非得隔一个偷一个,而是选择最大的方案。

比如100,1,2,3,4,100. 如果隔一个偷一个的话为100,1,2,3,4 = 106,100或100,1,2,3,4,100 = 104,但是如果是100,1,2,3,4,100 = 203明显是最大的方案.

  1. 特别注意:无论选择偷与不偷,都需要将左右子结点相加,因为只是相邻的结点不能偷,而不是整个子树都不能偷
图解
  1. 以此为例:其中dp数组含义是dp[当前结点偷的话当前共偷多少,不偷共偷多少]
    在这里插入图片描述
  2. 对于深度优先遍历的第一个结点为,左下角的3
    在这里插入图片描述
  1. 它的左子树是null,所以左子树偷与不偷都是0元,故其左子树的dp数组为dp[0,0],表示左子树偷的话共偷0元,不偷的话共偷0元
  2. 它的右子树是null,一样偷不偷都是0,故其右子树dp为dp[0,0]
  3. 它本身是3,所以偷的话就是+3.不偷的话就不加3
  1. 偷当前结点,那么左子树和右子树都不能偷,左子树不偷的话是0,右子树不偷也是0,合起来为0+0=0,因为都是0,所以就拿到0.加上当前结点3 共偷3元
  2. 不偷当前结点,那么左子树和右子树可以偷,左子树偷根结点和不偷都有0,右子树偷也是0,两棵子树都选最大的,合起来为0+0=0,当前结点也不偷,共偷0元
  1. 最终得到当前结点dp数组为dp[3,0],表示偷当前结点,不能偷两个直接儿子共获取3元,不偷当前结点偷左右儿子结点可偷0元
  1. 第二个遍历结点为它上面的2
    在这里插入图片描述
  1. 左子树为null,偷和不偷可获利[0,0]
  2. 右子树为3,偷和不偷分别获利[3,0]
  3. 当前结点如果偷,则+2,不偷则不加
  1. 偷当前结点,则左子树和右子树不能偷,左子树不偷为0,右子树不偷为0,合起来为0,则偷当前结点+2,获利2元
  2. 不偷当前结点,则左子树和右子树可以偷,左子树偷和不偷都为0,右子树偷为3,不偷为0,左右子树都选大的方案合为0+3 = 3,则不偷当前结点,获利3
  1. 因此当前结点dp为dp[2,3],表示偷当前结点的话,一共获利2元,不偷当前节点,共获利3元
  1. 第3个遍历的结点是右下角的1,同理,左右子树都为null,则偷当前结点为1,不偷为0,故dp[1,0]
  2. 第4个遍历的是右下角1的父结点3,同理,左子树为null,右子树为1,dp[1,0],故当前结点dp[3,1].表示偷当前结点,下面1不偷,为3.不偷当前结点,偷下面那个1为1
  3. 最后是根结点3
    在这里插入图片描述
  1. 如果偷当前结点
  1. 则左子结点不能偷,左子结点dp为[2,3],也就是不偷它,共有为3
  2. 右子结点也不能偷,为1
  3. 则,偷当前结点的3,加上左子结点不偷共有3,右子结点不偷共有1,加起来为7.
  1. 不偷当前结点
  1. 左子结点可以偷也可以不偷,偷有2,不偷为3,选大的3
  2. 右子结点,偷有3,不偷为1,选大的共有3
  3. 不偷当前结点为0,加上左子结点不偷,共有3,右子结点偷,共有3。加起来为6
  1. 故,根节点dp为dp[7,6]
  1. 最终,因为我们要偷最多的钱,所以选择dp[7,6]中大的那个,为7
动态规划5步曲
  1. DP数组及下标含义
  1. 我们要求出的是二叉树相邻结点不能都偷的情况下,最多偷多少钱。显然dp数组中存储的是相邻结点如果偷,能偷多少钱,不偷相邻的,而偷当前结点能有多少钱。要求出谁的?显然是求出,以当前结点来看,前面一个结点偷还是不偷。那么下标就是代表前一个结点偷还是不偷,很显然,只需要一个下标,也就是一维数组。而且这个一维数组只有两个元素,代表偷和不偷
  1. 递推公式
  1. 假设left[a,b]表示左子树中偷了左儿子,共有left[a]元,不偷左儿子,共有left[b]元,同理right[a,b]为右子树
  2. 当前结点偷的话,左右儿子不能偷,不偷左儿子为left[b],不偷右儿子为right[b]。
  3. 当前结点不偷,左右儿子可以偷也可以不偷,偷左儿子为left[a],不偷为left[b],偷右儿子为right[a],不偷为right[b]
  4. 故dp[n] = [本身 + left[b] + right[b] ,max{ left[a] , left[b] } + max{ right[a] , right[b] }.也就是当前结点,偷的话,就是本身+左子树不偷左儿子+右子树不偷右儿子。不偷当前结点,就是左子树偷左儿子或不偷左儿子选大的+右子树偷或不偷右儿子选大的
  1. dp数组初始化

在这里插入图片描述

  1. 数组遍历顺序(单重循环,无需考虑遍历顺序,一共就一维,哪里来的谁先谁后)
  2. 打印dp数组(自己生成dp数组后,将dp数组输出看看,是否和自己预想的一样。)

在这里插入图片描述

2.2 代码实现

代码

在这里插入图片描述

class Solution {public int rob(TreeNode root) {int[] dp = dfs(root);//获取dp数组return Math.max(dp[0],dp[1]);//返回最后一个房子偷与不偷,最大的结果}//int[]{偷当前结点最大获利,不偷当前结点最大获利}int[] dfs(TreeNode root){if (root == null)return new int[]{0,0};//如果没的遍历,就返回0,0,表示偷和不偷当前结点都是获利0,因为没有这个房子int[] left = dfs(root.left);//获取左子树dp数组int[] right = dfs(root.right);//获取右子树dp数组//如果偷当前结点,则只有一种选择,就是不偷左右子树根节点int yes = root.val+ left[1] + right[1];//如果不偷当前房子,则左右子树都需要偷//左子树我们偷根结点,和不偷根节点,选大的//右子树我们也可以选择偷根节点,或不偷,选大的int no = Math.max(left[0],left[1]) + Math.max(right[0],right[1]);//返回当前结点偷和不偷return new int[]{yes,no};}
}

这篇关于java数据结构与算法刷题-----LeetCode337. 打家劫舍 III的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/776800

相关文章

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

浅析Spring如何控制Bean的加载顺序

《浅析Spring如何控制Bean的加载顺序》在大多数情况下,我们不需要手动控制Bean的加载顺序,因为Spring的IoC容器足够智能,但在某些特殊场景下,这种隐式的依赖关系可能不存在,下面我们就来... 目录核心原则:依赖驱动加载手动控制 Bean 加载顺序的方法方法 1:使用@DependsOn(最直

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys