嵌入式C语言使用低通滤波、高通滤波、互补滤波算法

2024-03-05 14:20

本文主要是介绍嵌入式C语言使用低通滤波、高通滤波、互补滤波算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、一阶低通滤波算法
    • 1.1 公式
    • 1.2 C代码
  • 二、一阶高通滤波算法
  • 2.1 公式
  • 2.2 C代码
  • 三、互补滤波算法
    • 3.1 前言
    • 3.2 公式
    • 3.2 C代码

一、一阶低通滤波算法

  低通滤波(Low Pass Filter)用于从一个信号中去除高于某个频率的成分。它的基本原理是,信号中高于某个频率的成分在信号传输或接收过程中会发生衰减,而低于该频率的成分则不受影响。因此,通过将信号通过一个低通滤波器,可以去除高频噪声,保留信号中的低频成分。

  一阶低通滤波器是低通滤波的一阶离散形式,用于滤除输入信号中的高频分量,只保留低频分量。它通过减弱高频部分的幅度,从而实现对信号的平滑处理。一阶低通滤波器的基本原理涉及限制信号的变化速率,对快速变化的信号进行衰减,而对缓慢变化的信号保留。

  一阶低通滤波的形式与一阶滞后滤波完全相同。倒不如说一阶滞后滤波其实就是一阶低通滤波,只不过当该滤波器用于不同的作用时,我们将其冠以了不同的称呼。

1.1 公式

Y k = A X k + ( 1 − A ) Y k − 1 Y_k = AX_k + (1-A)Y_{k-1} Yk=AXk+(1A)Yk1
其中
A = 1 1 + 1 2 π f c T A = \frac{1}{1+\frac{1}{2\pi f_cT}} A=1+2πfcT11

Y k Y_k Yk :输出
Y k − 1 Y_{k-1} Yk1 :上一个输出
X k X_k Xk :输入
f c f_c fc :截至频率
T T T :采样周期

  在这个方程中, A A A 越小,时间常数越大,低通滤波器的截止频率就越低,对高频部分的抑制效果就越强。
一阶低通滤波器常用于需要平滑信号或去除高频噪声的应用场景。它们在信号处理、通信系统、控制系统等领域都有广泛的应用。

1.2 C代码

#include <stdio.h>// 定义一阶低通滤波器结构体
typedef struct {float alpha;           // 时间常数float previous_output; // 上一时刻的输出
} LowPassFilter;// 初始化滤波器
void initializeFilter(LowPassFilter* filter, float alpha) {filter->alpha = alpha;filter->previous_output = 0.0;
}// 一阶低通滤波函数
float filterValue(LowPassFilter* filter, float input) {// 计算输出float output = (1.0 - filter->alpha) * filter->previous_output + filter->alpha * input;// 更新上一次的输出filter->previous_output = output;return output;
}int main() {// 初始化滤波器,设置时间常数为0.2float alpha = 0.2;LowPassFilter myFilter;initializeFilter(&myFilter, alpha);// 使用示例float inputValues[] = {10.0, 15.0, 20.0, 18.0, 22.0, 25.0, 17.0};int numValues = sizeof(inputValues) / sizeof(inputValues[0]);printf("Input Values:\tFiltered Values:\n");for (int i = 0; i < numValues; ++i) {float filteredValue = filterValue(&myFilter, inputValues[i]);printf("%.2f\t\t%.2f\n", inputValues[i], filteredValue);}return 0;
}

  MedianAverageFilter 结构体用于存储滤波器的状态信息,包括窗口和平均滤波的权重系数。initializeFilter 函数用于初始化滤波器,而 filterValue 函数实现了中位值平均滤波的操作。在 main 函数中,我们创建了一个 MedianAverageFilter 实例,并对一系列输入值进行滤波处理,输出滤波后的值。

二、一阶高通滤波算法

  高通滤波(High Pass Filter)可以滤除信号中的低频部分,保留高频部分。高通滤波器的应用非常广泛,例如在音频处理中可以用来去除低频噪声、在图像处理中可以用来增强图像的边缘等。
  高通滤波算法的基本思想是:将信号分解成高频和低频两部分,去掉低频部分,只保留高频部分。高通滤波的实现可以通过频域方法和时域方法两种方式实现。
  频域方法是将信号转换到频域进行处理,常用的有傅里叶变换和小波变换等。通过滤波器在频域中滤除低频成分,然后再将信号转换回时域。
  时域方法则是通过差分等方式,直接在时域中滤除低频部分。
  一阶高通滤波器是高通滤波的一阶差分形式,用于滤除输入信号中的低频分量,同时保留高频分量。高通滤波器的作用是弱化或消除信号中的低频成分,从而突出高频变化或忽略缓慢变化的部分。一阶高通滤波器的设计原理涉及对低频分量进行衰减,保留高频部分。

2.1 公式

一阶高通滤波器的差分方程一般表示为:
Y k = A Y k − 1 + A ( X k − X k − 1 ) Y_k = AY_{k-1}+A(X_k-X_{k-1}) Yk=AYk1+A(XkXk1)
其中
A = 1 1 + 1 2 π f c T A = \frac{1}{1+\frac{1}{2\pi f_cT}} A=1+2πfcT11
Y k Y_k Yk :输出
Y k − 1 Y_{k-1} Yk1 :上一个输出
X k X_k Xk :输入
X k − 1 X_{k-1} Xk1 :上一个输入
f c f_c fc :截至频率
T T T :采样周期

  在这个方程中, A A A 越小,时间常数越大,高通滤波器的截止频率就越低,对低频部分的抑制效果就越弱。
  一阶高通滤波器通常应用于需要突出信号中快速变化或高频成分的应用场景。在图像处理、音频处理、传感器信号处理等领域,高通滤波器被广泛用于去除低频噪声或趋势成分。

2.2 C代码

#include <stdio.h>// 定义一阶高通滤波器结构体
typedef struct {float alpha;           // 时间常数float previous_output; // 上一时刻的输出
} HighPassFilter;// 初始化滤波器
void initializeFilter(HighPassFilter* filter, float alpha) {filter->alpha = alpha;filter->previous_output = 0.0;
}// 一阶高通滤波函数
float filterValue(HighPassFilter* filter, float input) {// 计算输出float output = filter->alpha * (input - filter->previous_output) + filter->previous_output;// 更新上一次的输出filter->previous_output = output;return output;
}int main() {// 初始化滤波器,设置时间常数为0.1float alpha = 0.1;HighPassFilter myFilter;initializeFilter(&myFilter, alpha);// 使用示例float inputValues[] = {10.0, 15.0, 20.0, 18.0, 22.0, 25.0, 17.0};int numValues = sizeof(inputValues) / sizeof(inputValues[0]);printf("Input Values:\tFiltered Values:\n");for (int i = 0; i < numValues; ++i) {float filteredValue = filterValue(&myFilter, inputValues[i]);printf("%.2f\t\t%.2f\n", inputValues[i], filteredValue);}return 0;
}

   HighPassFilter 结构体用于存储滤波器的状态信息,包括时间常数和上一次的输出。initializeFilter 函数用于初始化滤波器,而 filterValue 函数实现了一阶高通滤波的操作。在 main 函数中,我们创建了一个 HighPassFilter 实例,并对一系列输入值进行滤波处理,输出滤波后的值。

三、互补滤波算法

   你上网看了无数的互补滤波解读教程,始终不理解,为什么算法原理和代码可以没有任何关系?,那这个算法是怎么写成代码的呢?
我直接给出结论吧,造成这样的原因是因为:
   网上大部分互补滤波原理介绍的是传统的 线性互补滤波(Classical Complementary Filters), 而Mahony用来算解姿态的滤波是经过改进的 非线性互补滤波,
   非线性互补滤波里有两种形式:直接互补滤波(Direct complementary filter)和无源互补滤波(Passive complementary filter), 你在网上看到的开源代码都是基于无源互补滤波器的显式误差版本-显式互补滤波器(Explicit complementary filter).
你拿着两个完全不一样的东西,那肯定对应不上呀。

3.1 前言

   一般的互补公式用在六轴传感器的数据融合,其他的行业和领域现在还没有涉及到,这里只说六轴传感器的融合。以后遇到融合的话,可以直接用。

3.2 公式

y n = K θ n + ( 1 − K ) [ y n − 1 + Δ t Ω n ] y_n = K\theta_n + (1-K)[y_{n-1}+ \Delta t \Omega_n] yn=Kθn+(1K)[yn1+ΔtΩn]
y n y_n yn:输出角度
θ n \theta_n θn:加速度的角度
Δ t \Delta t Δt:采样周期
Ω n \Omega_n Ωn:陀螺仪角度
y n − 1 y_{n-1} yn1:上一次输出角度

可以看出,互补滤波就是通过加速度计获取的角度对陀螺仪积分的角度进行校准,从而积分的角度逐步跟踪到加速度传感器所得到的角度。K1 与1-K1 是对这两个角度取不同的权重,可以表示我们对不同数据的信任程度。

3.2 C代码

/****************************** BEFIN ********************************
**
**@Name       : Complementary_Filter_x
**@Brief      : 一阶互补滤波   
**@Param angle_m: 加速度算出的角度 
**		gyro_m: 陀螺仪的角速度
**@Return     : None
**@Author     : @mayuxin
**@Data	      : 2022-06-04
******************************** END *********************************/
float Complementary_Filter_x(float angle_m, float gyro_m)
{static float angle;float K1 =0.02; angle = K1 * angle_m+ (1-K1) * (angle + gyro_m * dt);return angle;
}

文章是自己总结而记录,有些知识点没说明白的,请各位看官多多提意见,多多交流,欢迎大家留言
如果技术交流可以加以下群,方便沟通
QQ群:370278903
点击链接加入群聊【蜡笔小芯的嵌入式交流群】
![])

这篇关于嵌入式C语言使用低通滤波、高通滤波、互补滤波算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/776793

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma