嵌入式C语言使用低通滤波、高通滤波、互补滤波算法

2024-03-05 14:20

本文主要是介绍嵌入式C语言使用低通滤波、高通滤波、互补滤波算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、一阶低通滤波算法
    • 1.1 公式
    • 1.2 C代码
  • 二、一阶高通滤波算法
  • 2.1 公式
  • 2.2 C代码
  • 三、互补滤波算法
    • 3.1 前言
    • 3.2 公式
    • 3.2 C代码

一、一阶低通滤波算法

  低通滤波(Low Pass Filter)用于从一个信号中去除高于某个频率的成分。它的基本原理是,信号中高于某个频率的成分在信号传输或接收过程中会发生衰减,而低于该频率的成分则不受影响。因此,通过将信号通过一个低通滤波器,可以去除高频噪声,保留信号中的低频成分。

  一阶低通滤波器是低通滤波的一阶离散形式,用于滤除输入信号中的高频分量,只保留低频分量。它通过减弱高频部分的幅度,从而实现对信号的平滑处理。一阶低通滤波器的基本原理涉及限制信号的变化速率,对快速变化的信号进行衰减,而对缓慢变化的信号保留。

  一阶低通滤波的形式与一阶滞后滤波完全相同。倒不如说一阶滞后滤波其实就是一阶低通滤波,只不过当该滤波器用于不同的作用时,我们将其冠以了不同的称呼。

1.1 公式

Y k = A X k + ( 1 − A ) Y k − 1 Y_k = AX_k + (1-A)Y_{k-1} Yk=AXk+(1A)Yk1
其中
A = 1 1 + 1 2 π f c T A = \frac{1}{1+\frac{1}{2\pi f_cT}} A=1+2πfcT11

Y k Y_k Yk :输出
Y k − 1 Y_{k-1} Yk1 :上一个输出
X k X_k Xk :输入
f c f_c fc :截至频率
T T T :采样周期

  在这个方程中, A A A 越小,时间常数越大,低通滤波器的截止频率就越低,对高频部分的抑制效果就越强。
一阶低通滤波器常用于需要平滑信号或去除高频噪声的应用场景。它们在信号处理、通信系统、控制系统等领域都有广泛的应用。

1.2 C代码

#include <stdio.h>// 定义一阶低通滤波器结构体
typedef struct {float alpha;           // 时间常数float previous_output; // 上一时刻的输出
} LowPassFilter;// 初始化滤波器
void initializeFilter(LowPassFilter* filter, float alpha) {filter->alpha = alpha;filter->previous_output = 0.0;
}// 一阶低通滤波函数
float filterValue(LowPassFilter* filter, float input) {// 计算输出float output = (1.0 - filter->alpha) * filter->previous_output + filter->alpha * input;// 更新上一次的输出filter->previous_output = output;return output;
}int main() {// 初始化滤波器,设置时间常数为0.2float alpha = 0.2;LowPassFilter myFilter;initializeFilter(&myFilter, alpha);// 使用示例float inputValues[] = {10.0, 15.0, 20.0, 18.0, 22.0, 25.0, 17.0};int numValues = sizeof(inputValues) / sizeof(inputValues[0]);printf("Input Values:\tFiltered Values:\n");for (int i = 0; i < numValues; ++i) {float filteredValue = filterValue(&myFilter, inputValues[i]);printf("%.2f\t\t%.2f\n", inputValues[i], filteredValue);}return 0;
}

  MedianAverageFilter 结构体用于存储滤波器的状态信息,包括窗口和平均滤波的权重系数。initializeFilter 函数用于初始化滤波器,而 filterValue 函数实现了中位值平均滤波的操作。在 main 函数中,我们创建了一个 MedianAverageFilter 实例,并对一系列输入值进行滤波处理,输出滤波后的值。

二、一阶高通滤波算法

  高通滤波(High Pass Filter)可以滤除信号中的低频部分,保留高频部分。高通滤波器的应用非常广泛,例如在音频处理中可以用来去除低频噪声、在图像处理中可以用来增强图像的边缘等。
  高通滤波算法的基本思想是:将信号分解成高频和低频两部分,去掉低频部分,只保留高频部分。高通滤波的实现可以通过频域方法和时域方法两种方式实现。
  频域方法是将信号转换到频域进行处理,常用的有傅里叶变换和小波变换等。通过滤波器在频域中滤除低频成分,然后再将信号转换回时域。
  时域方法则是通过差分等方式,直接在时域中滤除低频部分。
  一阶高通滤波器是高通滤波的一阶差分形式,用于滤除输入信号中的低频分量,同时保留高频分量。高通滤波器的作用是弱化或消除信号中的低频成分,从而突出高频变化或忽略缓慢变化的部分。一阶高通滤波器的设计原理涉及对低频分量进行衰减,保留高频部分。

2.1 公式

一阶高通滤波器的差分方程一般表示为:
Y k = A Y k − 1 + A ( X k − X k − 1 ) Y_k = AY_{k-1}+A(X_k-X_{k-1}) Yk=AYk1+A(XkXk1)
其中
A = 1 1 + 1 2 π f c T A = \frac{1}{1+\frac{1}{2\pi f_cT}} A=1+2πfcT11
Y k Y_k Yk :输出
Y k − 1 Y_{k-1} Yk1 :上一个输出
X k X_k Xk :输入
X k − 1 X_{k-1} Xk1 :上一个输入
f c f_c fc :截至频率
T T T :采样周期

  在这个方程中, A A A 越小,时间常数越大,高通滤波器的截止频率就越低,对低频部分的抑制效果就越弱。
  一阶高通滤波器通常应用于需要突出信号中快速变化或高频成分的应用场景。在图像处理、音频处理、传感器信号处理等领域,高通滤波器被广泛用于去除低频噪声或趋势成分。

2.2 C代码

#include <stdio.h>// 定义一阶高通滤波器结构体
typedef struct {float alpha;           // 时间常数float previous_output; // 上一时刻的输出
} HighPassFilter;// 初始化滤波器
void initializeFilter(HighPassFilter* filter, float alpha) {filter->alpha = alpha;filter->previous_output = 0.0;
}// 一阶高通滤波函数
float filterValue(HighPassFilter* filter, float input) {// 计算输出float output = filter->alpha * (input - filter->previous_output) + filter->previous_output;// 更新上一次的输出filter->previous_output = output;return output;
}int main() {// 初始化滤波器,设置时间常数为0.1float alpha = 0.1;HighPassFilter myFilter;initializeFilter(&myFilter, alpha);// 使用示例float inputValues[] = {10.0, 15.0, 20.0, 18.0, 22.0, 25.0, 17.0};int numValues = sizeof(inputValues) / sizeof(inputValues[0]);printf("Input Values:\tFiltered Values:\n");for (int i = 0; i < numValues; ++i) {float filteredValue = filterValue(&myFilter, inputValues[i]);printf("%.2f\t\t%.2f\n", inputValues[i], filteredValue);}return 0;
}

   HighPassFilter 结构体用于存储滤波器的状态信息,包括时间常数和上一次的输出。initializeFilter 函数用于初始化滤波器,而 filterValue 函数实现了一阶高通滤波的操作。在 main 函数中,我们创建了一个 HighPassFilter 实例,并对一系列输入值进行滤波处理,输出滤波后的值。

三、互补滤波算法

   你上网看了无数的互补滤波解读教程,始终不理解,为什么算法原理和代码可以没有任何关系?,那这个算法是怎么写成代码的呢?
我直接给出结论吧,造成这样的原因是因为:
   网上大部分互补滤波原理介绍的是传统的 线性互补滤波(Classical Complementary Filters), 而Mahony用来算解姿态的滤波是经过改进的 非线性互补滤波,
   非线性互补滤波里有两种形式:直接互补滤波(Direct complementary filter)和无源互补滤波(Passive complementary filter), 你在网上看到的开源代码都是基于无源互补滤波器的显式误差版本-显式互补滤波器(Explicit complementary filter).
你拿着两个完全不一样的东西,那肯定对应不上呀。

3.1 前言

   一般的互补公式用在六轴传感器的数据融合,其他的行业和领域现在还没有涉及到,这里只说六轴传感器的融合。以后遇到融合的话,可以直接用。

3.2 公式

y n = K θ n + ( 1 − K ) [ y n − 1 + Δ t Ω n ] y_n = K\theta_n + (1-K)[y_{n-1}+ \Delta t \Omega_n] yn=Kθn+(1K)[yn1+ΔtΩn]
y n y_n yn:输出角度
θ n \theta_n θn:加速度的角度
Δ t \Delta t Δt:采样周期
Ω n \Omega_n Ωn:陀螺仪角度
y n − 1 y_{n-1} yn1:上一次输出角度

可以看出,互补滤波就是通过加速度计获取的角度对陀螺仪积分的角度进行校准,从而积分的角度逐步跟踪到加速度传感器所得到的角度。K1 与1-K1 是对这两个角度取不同的权重,可以表示我们对不同数据的信任程度。

3.2 C代码

/****************************** BEFIN ********************************
**
**@Name       : Complementary_Filter_x
**@Brief      : 一阶互补滤波   
**@Param angle_m: 加速度算出的角度 
**		gyro_m: 陀螺仪的角速度
**@Return     : None
**@Author     : @mayuxin
**@Data	      : 2022-06-04
******************************** END *********************************/
float Complementary_Filter_x(float angle_m, float gyro_m)
{static float angle;float K1 =0.02; angle = K1 * angle_m+ (1-K1) * (angle + gyro_m * dt);return angle;
}

文章是自己总结而记录,有些知识点没说明白的,请各位看官多多提意见,多多交流,欢迎大家留言
如果技术交流可以加以下群,方便沟通
QQ群:370278903
点击链接加入群聊【蜡笔小芯的嵌入式交流群】
![])

这篇关于嵌入式C语言使用低通滤波、高通滤波、互补滤波算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/776793

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud