Opencv Sift和Surf特征实现图像无缝拼接生成全景图像

2024-03-04 13:48

本文主要是介绍Opencv Sift和Surf特征实现图像无缝拼接生成全景图像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



转自:http://m.blog.csdn.net/dcrmg/article/details/52629856

          


Sift和Surf算法实现两幅图像拼接的过程是一样的,主要分为4大部分:

  • 1. 特征点提取和描述
  • 2. 特征点配对,找到两幅图像中匹配点的位置
  • 3. 通过配对点,生成变换矩阵,并对图像1应用变换矩阵生成对图像2的映射图像
  • 4. 图像2拼接到映射图像上,完成拼接


过程1、2、3没啥好说的了,关键看看步骤4中的拼接部分。这里先采用比较简单一点的拼接方式来实现:

  • 1. 找到图像1和图像2中最强的匹配点所在的位置
  • 2. 通过映射矩阵变换,得到图像1的最强匹配点经过映射后投影到新图像上的位置坐标
  • 3. 在新图像上的最强匹配点的映射坐标处,衔接两幅图像,该点左侧图像完全是图像1,右侧完全是图像2


这里拼接的正确与否完全取决于特征点的选取,如果选取的是错误匹配的特征点,拼接一定失败,所以这里选了排在第一个的最强的匹配点,作为拼接点。


测试用例一原图1:



测试用例一原图2:



Sift拼接效果:



Surf拼接效果:



本例中最强匹配点的位置在图中红色小汽车附近,可以看到有一条像折痕一样的线条,这个就是两个图片的拼接线,并且如果图1和图2在拼接处的光线条件有变化的还,拼接后在衔接处左右就会显得很突兀,如Surf拼接中。拼接效果Sift貌似要比Surf好一点。


测试用例二原图1:



测试用例二原图2:



Sift拼接效果:



Surf拼接效果:




以下是Opencv实现:


#include "highgui/highgui.hpp"  
#include "opencv2/nonfree/nonfree.hpp"  
#include "opencv2/legacy/legacy.hpp" using namespace cv;//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri);int main(int argc,char *argv[])  
{  Mat image01=imread(argv[1]);  Mat image02=imread(argv[2]);imshow("拼接图像1",image01);imshow("拼接图像2",image02);//灰度图转换Mat image1,image2;  cvtColor(image01,image1,CV_RGB2GRAY);cvtColor(image02,image2,CV_RGB2GRAY);//提取特征点  SiftFeatureDetector siftDetector(800);  // 海塞矩阵阈值vector<KeyPoint> keyPoint1,keyPoint2;  siftDetector.detect(image1,keyPoint1);  siftDetector.detect(image2,keyPoint2);	//特征点描述,为下边的特征点匹配做准备  SiftDescriptorExtractor siftDescriptor;  Mat imageDesc1,imageDesc2;  siftDescriptor.compute(image1,keyPoint1,imageDesc1);  siftDescriptor.compute(image2,keyPoint2,imageDesc2);	//获得匹配特征点,并提取最优配对  	FlannBasedMatcher matcher;vector<DMatch> matchePoints;  matcher.match(imageDesc1,imageDesc2,matchePoints,Mat());sort(matchePoints.begin(),matchePoints.end()); //特征点排序	//获取排在前N个的最优匹配特征点vector<Point2f> imagePoints1,imagePoints2;for(int i=0;i<10;i++){		imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);		imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);		}//获取图像1到图像2的投影映射矩阵,尺寸为3*3Mat homo=findHomography(imagePoints1,imagePoints2,CV_RANSAC);		Mat adjustMat=(Mat_<double>(3,3)<<1.0,0,image01.cols,0,1.0,0,0,0,1.0);Mat adjustHomo=adjustMat*homo;//获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位Point2f originalLinkPoint,targetLinkPoint,basedImagePoint;originalLinkPoint=keyPoint1[matchePoints[0].queryIdx].pt;targetLinkPoint=getTransformPoint(originalLinkPoint,adjustHomo);basedImagePoint=keyPoint2[matchePoints[0].trainIdx].pt;//图像配准Mat imageTransform1;warpPerspective(image01,imageTransform1,adjustMat*homo,Size(image02.cols+image01.cols+10,image02.rows));//在最强匹配点的位置处衔接,最强匹配点左侧是图1,右侧是图2,这样直接替换图像衔接不好,光线有突变Mat ROIMat=image02(Rect(Point(basedImagePoint.x,0),Point(image02.cols,image02.rows)));	ROIMat.copyTo(Mat(imageTransform1,Rect(targetLinkPoint.x,0,image02.cols-basedImagePoint.x+1,image02.rows)));namedWindow("拼接结果",0);imshow("拼接结果",imageTransform1);	waitKey();  return 0;  
}//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri)
{Mat originelP,targetP;originelP=(Mat_<double>(3,1)<<originalPoint.x,originalPoint.y,1.0);targetP=transformMaxtri*originelP;float x=targetP.at<double>(0,0)/targetP.at<double>(2,0);float y=targetP.at<double>(1,0)/targetP.at<double>(2,0);return Point2f(x,y);
}


对于衔接处存在的缝隙问题,有一个解决办法是按一定权重叠加图1和图2的重叠部分,在重叠处图2的比重是1,向着图1的方向,越远离衔接处,图1的权重越来越大,图2的权重越来越低,实现平稳过渡按照这个思路优化过的代码如下:


#include "highgui/highgui.hpp"  
#include "opencv2/nonfree/nonfree.hpp"  
#include "opencv2/legacy/legacy.hpp" using namespace cv;//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri);int main(int argc,char *argv[])  
{  Mat image01=imread(argv[1]);  Mat image02=imread(argv[2]);imshow("拼接图像1",image01);imshow("拼接图像2",image02);//灰度图转换Mat image1,image2;  cvtColor(image01,image1,CV_RGB2GRAY);cvtColor(image02,image2,CV_RGB2GRAY);//提取特征点  SiftFeatureDetector siftDetector(800);  // 海塞矩阵阈值vector<KeyPoint> keyPoint1,keyPoint2;  siftDetector.detect(image1,keyPoint1);  siftDetector.detect(image2,keyPoint2);	//特征点描述,为下边的特征点匹配做准备  SiftDescriptorExtractor siftDescriptor;  Mat imageDesc1,imageDesc2;  siftDescriptor.compute(image1,keyPoint1,imageDesc1);  siftDescriptor.compute(image2,keyPoint2,imageDesc2);	//获得匹配特征点,并提取最优配对  	FlannBasedMatcher matcher;vector<DMatch> matchePoints;  matcher.match(imageDesc1,imageDesc2,matchePoints,Mat());sort(matchePoints.begin(),matchePoints.end()); //特征点排序	//获取排在前N个的最优匹配特征点vector<Point2f> imagePoints1,imagePoints2;for(int i=0;i<10;i++){		imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);		imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);		}//获取图像1到图像2的投影映射矩阵,尺寸为3*3Mat homo=findHomography(imagePoints1,imagePoints2,CV_RANSAC);		Mat adjustMat=(Mat_<double>(3,3)<<1.0,0,image01.cols,0,1.0,0,0,0,1.0);Mat adjustHomo=adjustMat*homo;//获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位Point2f originalLinkPoint,targetLinkPoint,basedImagePoint;originalLinkPoint=keyPoint1[matchePoints[0].queryIdx].pt;targetLinkPoint=getTransformPoint(originalLinkPoint,adjustHomo);basedImagePoint=keyPoint2[matchePoints[0].trainIdx].pt;//图像配准Mat imageTransform1;warpPerspective(image01,imageTransform1,adjustMat*homo,Size(image02.cols+image01.cols+110,image02.rows));//在最强匹配点左侧的重叠区域进行累加,是衔接稳定过渡,消除突变Mat image1Overlap,image2Overlap; //图1和图2的重叠部分	image1Overlap=imageTransform1(Rect(Point(targetLinkPoint.x-basedImagePoint.x,0),Point(targetLinkPoint.x,image02.rows)));image2Overlap=image02(Rect(0,0,image1Overlap.cols,image1Overlap.rows));Mat image1ROICopy=image1Overlap.clone();  //复制一份图1的重叠部分for(int i=0;i<image1Overlap.rows;i++){for(int j=0;j<image1Overlap.cols;j++){double weight;weight=(double)j/image1Overlap.cols;  //随距离改变而改变的叠加系数image1Overlap.at<Vec3b>(i,j)[0]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[0]+weight*image2Overlap.at<Vec3b>(i,j)[0];image1Overlap.at<Vec3b>(i,j)[1]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[1]+weight*image2Overlap.at<Vec3b>(i,j)[1];image1Overlap.at<Vec3b>(i,j)[2]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[2]+weight*image2Overlap.at<Vec3b>(i,j)[2];}}Mat ROIMat=image02(Rect(Point(image1Overlap.cols,0),Point(image02.cols,image02.rows)));	 //图2中不重合的部分ROIMat.copyTo(Mat(imageTransform1,Rect(targetLinkPoint.x,0, ROIMat.cols,image02.rows))); //不重合的部分直接衔接上去namedWindow("拼接结果",0);imshow("拼接结果",imageTransform1);	imwrite("D:\\拼接结果.jpg",imageTransform1);waitKey();  return 0;  
}//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri)
{Mat originelP,targetP;originelP=(Mat_<double>(3,1)<<originalPoint.x,originalPoint.y,1.0);targetP=transformMaxtri*originelP;float x=targetP.at<double>(0,0)/targetP.at<double>(2,0);float y=targetP.at<double>(1,0)/targetP.at<double>(2,0);return Point2f(x,y);
}


Sift拼接效果:



Surf拼接效果:



拼接处的线条消失了,也没有见突兀的光线变化,基本实现了无缝拼接


测试用例三原图1:



测试用例三原图2:



拼接效果:


这篇关于Opencv Sift和Surf特征实现图像无缝拼接生成全景图像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/773366

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定