Opencv Sift和Surf特征实现图像无缝拼接生成全景图像

2024-03-04 13:48

本文主要是介绍Opencv Sift和Surf特征实现图像无缝拼接生成全景图像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



转自:http://m.blog.csdn.net/dcrmg/article/details/52629856

          


Sift和Surf算法实现两幅图像拼接的过程是一样的,主要分为4大部分:

  • 1. 特征点提取和描述
  • 2. 特征点配对,找到两幅图像中匹配点的位置
  • 3. 通过配对点,生成变换矩阵,并对图像1应用变换矩阵生成对图像2的映射图像
  • 4. 图像2拼接到映射图像上,完成拼接


过程1、2、3没啥好说的了,关键看看步骤4中的拼接部分。这里先采用比较简单一点的拼接方式来实现:

  • 1. 找到图像1和图像2中最强的匹配点所在的位置
  • 2. 通过映射矩阵变换,得到图像1的最强匹配点经过映射后投影到新图像上的位置坐标
  • 3. 在新图像上的最强匹配点的映射坐标处,衔接两幅图像,该点左侧图像完全是图像1,右侧完全是图像2


这里拼接的正确与否完全取决于特征点的选取,如果选取的是错误匹配的特征点,拼接一定失败,所以这里选了排在第一个的最强的匹配点,作为拼接点。


测试用例一原图1:



测试用例一原图2:



Sift拼接效果:



Surf拼接效果:



本例中最强匹配点的位置在图中红色小汽车附近,可以看到有一条像折痕一样的线条,这个就是两个图片的拼接线,并且如果图1和图2在拼接处的光线条件有变化的还,拼接后在衔接处左右就会显得很突兀,如Surf拼接中。拼接效果Sift貌似要比Surf好一点。


测试用例二原图1:



测试用例二原图2:



Sift拼接效果:



Surf拼接效果:




以下是Opencv实现:


#include "highgui/highgui.hpp"  
#include "opencv2/nonfree/nonfree.hpp"  
#include "opencv2/legacy/legacy.hpp" using namespace cv;//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri);int main(int argc,char *argv[])  
{  Mat image01=imread(argv[1]);  Mat image02=imread(argv[2]);imshow("拼接图像1",image01);imshow("拼接图像2",image02);//灰度图转换Mat image1,image2;  cvtColor(image01,image1,CV_RGB2GRAY);cvtColor(image02,image2,CV_RGB2GRAY);//提取特征点  SiftFeatureDetector siftDetector(800);  // 海塞矩阵阈值vector<KeyPoint> keyPoint1,keyPoint2;  siftDetector.detect(image1,keyPoint1);  siftDetector.detect(image2,keyPoint2);	//特征点描述,为下边的特征点匹配做准备  SiftDescriptorExtractor siftDescriptor;  Mat imageDesc1,imageDesc2;  siftDescriptor.compute(image1,keyPoint1,imageDesc1);  siftDescriptor.compute(image2,keyPoint2,imageDesc2);	//获得匹配特征点,并提取最优配对  	FlannBasedMatcher matcher;vector<DMatch> matchePoints;  matcher.match(imageDesc1,imageDesc2,matchePoints,Mat());sort(matchePoints.begin(),matchePoints.end()); //特征点排序	//获取排在前N个的最优匹配特征点vector<Point2f> imagePoints1,imagePoints2;for(int i=0;i<10;i++){		imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);		imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);		}//获取图像1到图像2的投影映射矩阵,尺寸为3*3Mat homo=findHomography(imagePoints1,imagePoints2,CV_RANSAC);		Mat adjustMat=(Mat_<double>(3,3)<<1.0,0,image01.cols,0,1.0,0,0,0,1.0);Mat adjustHomo=adjustMat*homo;//获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位Point2f originalLinkPoint,targetLinkPoint,basedImagePoint;originalLinkPoint=keyPoint1[matchePoints[0].queryIdx].pt;targetLinkPoint=getTransformPoint(originalLinkPoint,adjustHomo);basedImagePoint=keyPoint2[matchePoints[0].trainIdx].pt;//图像配准Mat imageTransform1;warpPerspective(image01,imageTransform1,adjustMat*homo,Size(image02.cols+image01.cols+10,image02.rows));//在最强匹配点的位置处衔接,最强匹配点左侧是图1,右侧是图2,这样直接替换图像衔接不好,光线有突变Mat ROIMat=image02(Rect(Point(basedImagePoint.x,0),Point(image02.cols,image02.rows)));	ROIMat.copyTo(Mat(imageTransform1,Rect(targetLinkPoint.x,0,image02.cols-basedImagePoint.x+1,image02.rows)));namedWindow("拼接结果",0);imshow("拼接结果",imageTransform1);	waitKey();  return 0;  
}//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri)
{Mat originelP,targetP;originelP=(Mat_<double>(3,1)<<originalPoint.x,originalPoint.y,1.0);targetP=transformMaxtri*originelP;float x=targetP.at<double>(0,0)/targetP.at<double>(2,0);float y=targetP.at<double>(1,0)/targetP.at<double>(2,0);return Point2f(x,y);
}


对于衔接处存在的缝隙问题,有一个解决办法是按一定权重叠加图1和图2的重叠部分,在重叠处图2的比重是1,向着图1的方向,越远离衔接处,图1的权重越来越大,图2的权重越来越低,实现平稳过渡按照这个思路优化过的代码如下:


#include "highgui/highgui.hpp"  
#include "opencv2/nonfree/nonfree.hpp"  
#include "opencv2/legacy/legacy.hpp" using namespace cv;//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri);int main(int argc,char *argv[])  
{  Mat image01=imread(argv[1]);  Mat image02=imread(argv[2]);imshow("拼接图像1",image01);imshow("拼接图像2",image02);//灰度图转换Mat image1,image2;  cvtColor(image01,image1,CV_RGB2GRAY);cvtColor(image02,image2,CV_RGB2GRAY);//提取特征点  SiftFeatureDetector siftDetector(800);  // 海塞矩阵阈值vector<KeyPoint> keyPoint1,keyPoint2;  siftDetector.detect(image1,keyPoint1);  siftDetector.detect(image2,keyPoint2);	//特征点描述,为下边的特征点匹配做准备  SiftDescriptorExtractor siftDescriptor;  Mat imageDesc1,imageDesc2;  siftDescriptor.compute(image1,keyPoint1,imageDesc1);  siftDescriptor.compute(image2,keyPoint2,imageDesc2);	//获得匹配特征点,并提取最优配对  	FlannBasedMatcher matcher;vector<DMatch> matchePoints;  matcher.match(imageDesc1,imageDesc2,matchePoints,Mat());sort(matchePoints.begin(),matchePoints.end()); //特征点排序	//获取排在前N个的最优匹配特征点vector<Point2f> imagePoints1,imagePoints2;for(int i=0;i<10;i++){		imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);		imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);		}//获取图像1到图像2的投影映射矩阵,尺寸为3*3Mat homo=findHomography(imagePoints1,imagePoints2,CV_RANSAC);		Mat adjustMat=(Mat_<double>(3,3)<<1.0,0,image01.cols,0,1.0,0,0,0,1.0);Mat adjustHomo=adjustMat*homo;//获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位Point2f originalLinkPoint,targetLinkPoint,basedImagePoint;originalLinkPoint=keyPoint1[matchePoints[0].queryIdx].pt;targetLinkPoint=getTransformPoint(originalLinkPoint,adjustHomo);basedImagePoint=keyPoint2[matchePoints[0].trainIdx].pt;//图像配准Mat imageTransform1;warpPerspective(image01,imageTransform1,adjustMat*homo,Size(image02.cols+image01.cols+110,image02.rows));//在最强匹配点左侧的重叠区域进行累加,是衔接稳定过渡,消除突变Mat image1Overlap,image2Overlap; //图1和图2的重叠部分	image1Overlap=imageTransform1(Rect(Point(targetLinkPoint.x-basedImagePoint.x,0),Point(targetLinkPoint.x,image02.rows)));image2Overlap=image02(Rect(0,0,image1Overlap.cols,image1Overlap.rows));Mat image1ROICopy=image1Overlap.clone();  //复制一份图1的重叠部分for(int i=0;i<image1Overlap.rows;i++){for(int j=0;j<image1Overlap.cols;j++){double weight;weight=(double)j/image1Overlap.cols;  //随距离改变而改变的叠加系数image1Overlap.at<Vec3b>(i,j)[0]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[0]+weight*image2Overlap.at<Vec3b>(i,j)[0];image1Overlap.at<Vec3b>(i,j)[1]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[1]+weight*image2Overlap.at<Vec3b>(i,j)[1];image1Overlap.at<Vec3b>(i,j)[2]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[2]+weight*image2Overlap.at<Vec3b>(i,j)[2];}}Mat ROIMat=image02(Rect(Point(image1Overlap.cols,0),Point(image02.cols,image02.rows)));	 //图2中不重合的部分ROIMat.copyTo(Mat(imageTransform1,Rect(targetLinkPoint.x,0, ROIMat.cols,image02.rows))); //不重合的部分直接衔接上去namedWindow("拼接结果",0);imshow("拼接结果",imageTransform1);	imwrite("D:\\拼接结果.jpg",imageTransform1);waitKey();  return 0;  
}//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri)
{Mat originelP,targetP;originelP=(Mat_<double>(3,1)<<originalPoint.x,originalPoint.y,1.0);targetP=transformMaxtri*originelP;float x=targetP.at<double>(0,0)/targetP.at<double>(2,0);float y=targetP.at<double>(1,0)/targetP.at<double>(2,0);return Point2f(x,y);
}


Sift拼接效果:



Surf拼接效果:



拼接处的线条消失了,也没有见突兀的光线变化,基本实现了无缝拼接


测试用例三原图1:



测试用例三原图2:



拼接效果:


这篇关于Opencv Sift和Surf特征实现图像无缝拼接生成全景图像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/773366

相关文章

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方