Opencv Sift和Surf特征实现图像无缝拼接生成全景图像

2024-03-04 13:48

本文主要是介绍Opencv Sift和Surf特征实现图像无缝拼接生成全景图像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



转自:http://m.blog.csdn.net/dcrmg/article/details/52629856

          


Sift和Surf算法实现两幅图像拼接的过程是一样的,主要分为4大部分:

  • 1. 特征点提取和描述
  • 2. 特征点配对,找到两幅图像中匹配点的位置
  • 3. 通过配对点,生成变换矩阵,并对图像1应用变换矩阵生成对图像2的映射图像
  • 4. 图像2拼接到映射图像上,完成拼接


过程1、2、3没啥好说的了,关键看看步骤4中的拼接部分。这里先采用比较简单一点的拼接方式来实现:

  • 1. 找到图像1和图像2中最强的匹配点所在的位置
  • 2. 通过映射矩阵变换,得到图像1的最强匹配点经过映射后投影到新图像上的位置坐标
  • 3. 在新图像上的最强匹配点的映射坐标处,衔接两幅图像,该点左侧图像完全是图像1,右侧完全是图像2


这里拼接的正确与否完全取决于特征点的选取,如果选取的是错误匹配的特征点,拼接一定失败,所以这里选了排在第一个的最强的匹配点,作为拼接点。


测试用例一原图1:



测试用例一原图2:



Sift拼接效果:



Surf拼接效果:



本例中最强匹配点的位置在图中红色小汽车附近,可以看到有一条像折痕一样的线条,这个就是两个图片的拼接线,并且如果图1和图2在拼接处的光线条件有变化的还,拼接后在衔接处左右就会显得很突兀,如Surf拼接中。拼接效果Sift貌似要比Surf好一点。


测试用例二原图1:



测试用例二原图2:



Sift拼接效果:



Surf拼接效果:




以下是Opencv实现:


#include "highgui/highgui.hpp"  
#include "opencv2/nonfree/nonfree.hpp"  
#include "opencv2/legacy/legacy.hpp" using namespace cv;//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri);int main(int argc,char *argv[])  
{  Mat image01=imread(argv[1]);  Mat image02=imread(argv[2]);imshow("拼接图像1",image01);imshow("拼接图像2",image02);//灰度图转换Mat image1,image2;  cvtColor(image01,image1,CV_RGB2GRAY);cvtColor(image02,image2,CV_RGB2GRAY);//提取特征点  SiftFeatureDetector siftDetector(800);  // 海塞矩阵阈值vector<KeyPoint> keyPoint1,keyPoint2;  siftDetector.detect(image1,keyPoint1);  siftDetector.detect(image2,keyPoint2);	//特征点描述,为下边的特征点匹配做准备  SiftDescriptorExtractor siftDescriptor;  Mat imageDesc1,imageDesc2;  siftDescriptor.compute(image1,keyPoint1,imageDesc1);  siftDescriptor.compute(image2,keyPoint2,imageDesc2);	//获得匹配特征点,并提取最优配对  	FlannBasedMatcher matcher;vector<DMatch> matchePoints;  matcher.match(imageDesc1,imageDesc2,matchePoints,Mat());sort(matchePoints.begin(),matchePoints.end()); //特征点排序	//获取排在前N个的最优匹配特征点vector<Point2f> imagePoints1,imagePoints2;for(int i=0;i<10;i++){		imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);		imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);		}//获取图像1到图像2的投影映射矩阵,尺寸为3*3Mat homo=findHomography(imagePoints1,imagePoints2,CV_RANSAC);		Mat adjustMat=(Mat_<double>(3,3)<<1.0,0,image01.cols,0,1.0,0,0,0,1.0);Mat adjustHomo=adjustMat*homo;//获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位Point2f originalLinkPoint,targetLinkPoint,basedImagePoint;originalLinkPoint=keyPoint1[matchePoints[0].queryIdx].pt;targetLinkPoint=getTransformPoint(originalLinkPoint,adjustHomo);basedImagePoint=keyPoint2[matchePoints[0].trainIdx].pt;//图像配准Mat imageTransform1;warpPerspective(image01,imageTransform1,adjustMat*homo,Size(image02.cols+image01.cols+10,image02.rows));//在最强匹配点的位置处衔接,最强匹配点左侧是图1,右侧是图2,这样直接替换图像衔接不好,光线有突变Mat ROIMat=image02(Rect(Point(basedImagePoint.x,0),Point(image02.cols,image02.rows)));	ROIMat.copyTo(Mat(imageTransform1,Rect(targetLinkPoint.x,0,image02.cols-basedImagePoint.x+1,image02.rows)));namedWindow("拼接结果",0);imshow("拼接结果",imageTransform1);	waitKey();  return 0;  
}//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri)
{Mat originelP,targetP;originelP=(Mat_<double>(3,1)<<originalPoint.x,originalPoint.y,1.0);targetP=transformMaxtri*originelP;float x=targetP.at<double>(0,0)/targetP.at<double>(2,0);float y=targetP.at<double>(1,0)/targetP.at<double>(2,0);return Point2f(x,y);
}


对于衔接处存在的缝隙问题,有一个解决办法是按一定权重叠加图1和图2的重叠部分,在重叠处图2的比重是1,向着图1的方向,越远离衔接处,图1的权重越来越大,图2的权重越来越低,实现平稳过渡按照这个思路优化过的代码如下:


#include "highgui/highgui.hpp"  
#include "opencv2/nonfree/nonfree.hpp"  
#include "opencv2/legacy/legacy.hpp" using namespace cv;//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri);int main(int argc,char *argv[])  
{  Mat image01=imread(argv[1]);  Mat image02=imread(argv[2]);imshow("拼接图像1",image01);imshow("拼接图像2",image02);//灰度图转换Mat image1,image2;  cvtColor(image01,image1,CV_RGB2GRAY);cvtColor(image02,image2,CV_RGB2GRAY);//提取特征点  SiftFeatureDetector siftDetector(800);  // 海塞矩阵阈值vector<KeyPoint> keyPoint1,keyPoint2;  siftDetector.detect(image1,keyPoint1);  siftDetector.detect(image2,keyPoint2);	//特征点描述,为下边的特征点匹配做准备  SiftDescriptorExtractor siftDescriptor;  Mat imageDesc1,imageDesc2;  siftDescriptor.compute(image1,keyPoint1,imageDesc1);  siftDescriptor.compute(image2,keyPoint2,imageDesc2);	//获得匹配特征点,并提取最优配对  	FlannBasedMatcher matcher;vector<DMatch> matchePoints;  matcher.match(imageDesc1,imageDesc2,matchePoints,Mat());sort(matchePoints.begin(),matchePoints.end()); //特征点排序	//获取排在前N个的最优匹配特征点vector<Point2f> imagePoints1,imagePoints2;for(int i=0;i<10;i++){		imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);		imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);		}//获取图像1到图像2的投影映射矩阵,尺寸为3*3Mat homo=findHomography(imagePoints1,imagePoints2,CV_RANSAC);		Mat adjustMat=(Mat_<double>(3,3)<<1.0,0,image01.cols,0,1.0,0,0,0,1.0);Mat adjustHomo=adjustMat*homo;//获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位Point2f originalLinkPoint,targetLinkPoint,basedImagePoint;originalLinkPoint=keyPoint1[matchePoints[0].queryIdx].pt;targetLinkPoint=getTransformPoint(originalLinkPoint,adjustHomo);basedImagePoint=keyPoint2[matchePoints[0].trainIdx].pt;//图像配准Mat imageTransform1;warpPerspective(image01,imageTransform1,adjustMat*homo,Size(image02.cols+image01.cols+110,image02.rows));//在最强匹配点左侧的重叠区域进行累加,是衔接稳定过渡,消除突变Mat image1Overlap,image2Overlap; //图1和图2的重叠部分	image1Overlap=imageTransform1(Rect(Point(targetLinkPoint.x-basedImagePoint.x,0),Point(targetLinkPoint.x,image02.rows)));image2Overlap=image02(Rect(0,0,image1Overlap.cols,image1Overlap.rows));Mat image1ROICopy=image1Overlap.clone();  //复制一份图1的重叠部分for(int i=0;i<image1Overlap.rows;i++){for(int j=0;j<image1Overlap.cols;j++){double weight;weight=(double)j/image1Overlap.cols;  //随距离改变而改变的叠加系数image1Overlap.at<Vec3b>(i,j)[0]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[0]+weight*image2Overlap.at<Vec3b>(i,j)[0];image1Overlap.at<Vec3b>(i,j)[1]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[1]+weight*image2Overlap.at<Vec3b>(i,j)[1];image1Overlap.at<Vec3b>(i,j)[2]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[2]+weight*image2Overlap.at<Vec3b>(i,j)[2];}}Mat ROIMat=image02(Rect(Point(image1Overlap.cols,0),Point(image02.cols,image02.rows)));	 //图2中不重合的部分ROIMat.copyTo(Mat(imageTransform1,Rect(targetLinkPoint.x,0, ROIMat.cols,image02.rows))); //不重合的部分直接衔接上去namedWindow("拼接结果",0);imshow("拼接结果",imageTransform1);	imwrite("D:\\拼接结果.jpg",imageTransform1);waitKey();  return 0;  
}//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri)
{Mat originelP,targetP;originelP=(Mat_<double>(3,1)<<originalPoint.x,originalPoint.y,1.0);targetP=transformMaxtri*originelP;float x=targetP.at<double>(0,0)/targetP.at<double>(2,0);float y=targetP.at<double>(1,0)/targetP.at<double>(2,0);return Point2f(x,y);
}


Sift拼接效果:



Surf拼接效果:



拼接处的线条消失了,也没有见突兀的光线变化,基本实现了无缝拼接


测试用例三原图1:



测试用例三原图2:



拼接效果:


这篇关于Opencv Sift和Surf特征实现图像无缝拼接生成全景图像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/773366

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文